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A Message from the State Board of Education 
and the State Superintendent of Public Instruction 

The California Common Core State Standards: Mathematics (CA CCSSM) reflect the importance of focus, coherence, and rigor 
as the guiding principles for mathematics instruction and learning. California’s implementation of the CA CCSSM demonstrates a 
commitment to providing a world-class education for all students that supports college and career readiness and the knowledge 
and skills necessary to fully participate in the twenty-first-century global economy. 

The CA CCSSM build on California’s standards-based educational system in which curriculum, instruction, professional learning,  
assessment, and accountability are aligned to support student attainment of the standards. The CA CCSSM incorporate current  
research and input from education stakeholders—including other state departments of education, scholars, professional  
organizations, teachers and other educators, parents, and students. California additions to the standards (identified in boldface 
text and followed by the abbreviation “CA”) were incorporated in an effort to retain the consistency and precision of our past 
standards. The CA CCSSM are internationally benchmarked, research-based, and unequivocally rigorous.

The standards call for learning mathematical content in the context of real-world situations, using mathematics to solve problems,  
and developing “habits of mind” that foster mastery of mathematics content as well as mathematical understanding. The  
standards for kindergarten through grade 8 prepare students for higher mathematics. The standards for higher mathematics 
reflect the knowledge and skills that are necessary to prepare students for college and careers and productive citizenship. 

Implementation of the CA CCSSM will take time and effort, but it also provides a new and exciting opportunity to ensure that 
California’s students are held to the same high expectations in mathematics as their national and global peers. Although  
California educators have implemented standards before, the CA CCSSM require not only rigorous curriculum and instruction  
but also conceptual understanding, procedural skill and fluency, and the ability to apply mathematics. In short, the standards 
call for meeting the challenges of the twenty-first century through innovation.

MICHAEL W. KIRST, President 
California State Board of Education

TOM TORLAKSON 
State Superintendent of Public Instruction
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Introduction

All students need a high-quality mathematics program designed to prepare them to graduate from high school ready for college 
and careers. In support of this goal, California adopted the California Common Core State Standards: Mathematics (CA CCSSM) 
in August 2010, replacing the 1997 statewide mathematics academic standards. As part of the modification of the CA CCSSM in  
January 2013, the California State Board of Education also approved higher mathematics standards organized into model courses.

The CA CCSSM are designed to be robust, linked within and across grades, and relevant to the real world, reflecting the  
knowledge and skills that young people will need for success in college and careers. With California’s students fully prepared 
for the future, our students will be positioned to compete successfully in the global economy.

The development of the standards began as a voluntary, state-led effort coordinated by the Council of Chief State School  
Officers (CCSSO) and the National Governors Association (NGA) Center for Best Practices. Both organizations were committed 
to developing a set of standards that would help prepare students for success in career and college. The CA CCSSM are based 
on evidence of the skills and knowledge needed for college and career readiness and an expectation that students be able to 
know and do mathematics by solving a range of problems and engaging in key mathematical practices. 

The development of the standards was informed by international benchmarking and began with research on what is known 
about how students’ mathematical knowledge, skills, and understanding develop over time. The progression from kindergarten 
standards to standards for higher mathematics exemplifies the three principles of focus, coherence, and rigor that are the basis 
of the CCSSM. 

The first principle, focus, means that instruction should focus deeply on only those concepts that are emphasized in the  
standards so that students can gain strong foundational conceptual understanding, a high degree of procedural skill and  
fluency, and the ability to apply the mathematics they know to solve problems inside and outside the mathematics classroom. 
Coherence arises from mathematical connections. Some of the connections in the standards knit topics together at a single 
grade level. Most connections are vertical, as the standards support a progression of increasing knowledge, skill, and sophisti-
cation across the grades. Finally, rigor requires that conceptual understanding, procedural skill and fluency, and application be 
approached with equal intensity.

Two Types of Standards
The CA CCSSM include two types of standards: Eight Mathematical Practice Standards (identical for each grade level) and 
Mathematical Content Standards (different at each grade level). Together these standards address both “habits of mind” that 
students should develop to foster mathematical understanding and expertise and skills and knowledge—what students need to 
know and be able to do. The mathematical content standards were built on progressions of topics across grade levels, informed 
by both research on children’s cognitive development and by the logical structure of mathematics. 

The Standards for Mathematical Practice (MP) are the same at each grade level, with the exception of an additional practice 
standard included in the CA CCSSM for higher mathematics only: MP3.1: Students build proofs by induction and proofs by 
contradiction. CA This standard may be seen as an extension of Mathematical Practice 3, in which students construct viable 
arguments and critique the reasoning of others. Ideally, several MP standards will be evident in each lesson as they interact 
and overlap with each other. The MP standards are not a checklist; they are the basis of mathematics instruction and learning. 
Structuring the MP standards can help educators recognize opportunities for students to engage with mathematics in grade-
appropriate ways. The eight MP standards may be grouped into four categories as illustrated in the following chart. 
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Structuring the Standards for Mathematical Practice1
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2. Reason abstractly and quantitatively. 

3. Construct viable arguments and   
critique the reasoning of others.

Reasoning and explaining

4. Model with mathematics. 

5. Use appropriate tools strategically. 
Modeling and using tools

7. Look for and make use of structure. 

8. Look for and express regularity in repeated  
reasoning. 

Seeing structure and generalizing

The CA CCSSM call for mathematical practices and mathematical content to be connected as students engage in mathematical 
tasks. These connections are essential to support the development of students’ broader mathematical understanding—students 
who lack understanding of a topic may rely too heavily on procedures. The MP standards must be taught as carefully and  
practiced as intentionally as the Standards for Mathematical Content. Neither should be isolated from the other; effective  
mathematics instruction occurs when the two halves of the CA CCSSM come together as a powerful whole.

How to Read the Standards
Kindergarten–Grade 8

In kindergarten through grade 8, the CA CCSSM are organized by grade level and then by domains (clusters of standards  
that address “big ideas” and support connections of topics across the grades), clusters (groups of related standards inside 
domains), and finally by the standards (what students should understand and be able to do). The standards do not dictate 
curriculum or pedagogy. For example, just because Topic A appears before Topic B in the standards for a given grade does not 
mean that Topic A must be taught before Topic B.

The code for each standard begins with the grade level, followed by the domain code and the number of the standard. For example,  
“3.NBT 2” would be the second standard in the domain of Number and Operations in Base Ten of the standards for grade 3.

1. Bill McCallum. 2011. Structuring the Mathematical Practices. http://commoncoretools.me/wp-content/uploads/2011/03/practices.pdf  
(accessed April 1, 2013).
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Number and Operations in Base Ten 3.NBT
Use place value understanding and properties of operations to perform multi-digit arithmetic.

1. Use place value understanding to round whole numbers to the nearest 10 or 100.

2.  Fluently add and subtract within 1000 using strategies and algorithms based on place 
value, properties of operations, and/or the relationship between addition and subtraction.

3.  Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9 × 80,  
5 × 60) using strategies based on place value and properties of operations.

Domain

Standard

Cluster

4  

Higher Mathematics

In California, the CA CCSSM for higher mathematics are organized into both model courses and conceptual categories. The 
higher mathematics courses adopted by the State Board of Education in January 2013 are based on the guidance provided in 
Appendix A published by the Common Core State Standards Initiative.2 The model courses for higher mathematics are organized 
into two pathways: traditional and integrated. The traditional pathway consists of the higher mathematics standards organized 
along more traditional lines into Algebra I, Geometry, and Algebra II courses. The integrated pathway consists of the courses 
Mathematics I, II, and III. The integrated pathway presents higher mathematics as a connected subject, in that each course  
contains standards from all six of the conceptual categories. In addition, two advanced higher mathematics courses were  
retained from the 1997 mathematics standards: Advanced Placement Probability and Statistics and Calculus.

The standards for higher mathematics are also organized into conceptual categories:

	  Number and Quantity
	  Algebra
	  Functions
	  Modeling 
	  Geometry
	  Statistics and Probability

The conceptual categories portray a coherent view of higher mathematics based on the realization that students’ work on a 
broad topic, such as functions, crosses a number of traditional course boundaries. As local school districts develop a full range 
of courses and curriculum in higher mathematics, the organization of standards by conceptual categories offers a starting point 
for discussing course content. 

The code for each higher mathematics standard begins with the identifier for the conceptual category code (N, A, F, G, S), 
followed by the domain code and the number of the standard. For example, “F-LE.5” would be the fifth standard in the domain 
of Linear, Quadratic, and Exponential Models in the conceptual category of Functions.

2. Appendix A provides guidance to the field on developing higher mathematics courses. This appendix is available on the Common Core State Standards 
Initiative Web site at http://www.corestandards.org/Math. 



Conceptual Conceptual Category 
Category and Domain Codes

Functions

Linear, Quadratic, and Exponential Models F-LE
Interpret expressions for functions in terms of the situation they model. Cluster 

Heading5.  Interpret the parameters in a linear or exponential function in terms of a context. 
Domain

6. Apply quadratic functions to physical problems, such as the motion of an object 
under the force of gravity. CA 

California Addition:  Modeling 
Boldface + CA Standard

The star symbol () following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as  
a collection of isolated topics but in relation to other standards. Making mathematical models is an MP standard, and modeling 
standards appear throughout the higher mathematics standards indicated by a  symbol. Additional mathematics that students 
should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by  
a plus symbol (+). Standards with a (+) symbol may appear in courses intended for all students.
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Standards for  
Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek 
to develop in their students. These practices rest on important “processes and proficiencies” with longstanding importance 
in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, com-
munication, representation, and connections. The second are the strands of mathematical proficiency specified in the National 
Research Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension 
of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, 
efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy).

1) Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its 
solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the 
solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and 
try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate 
their progress and change course if necessary. Older students might, depending on the context of the problem, transform alge-
braic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically 
proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams 
of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using 
concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers 
to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the 
approaches of others to solving complex problems and identify correspondences between different approaches.

2) Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two 
complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a 
given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without 
necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in 
order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent represen-
tation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute 
them; and knowing and flexibly using different properties of operations and objects.

3) Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results 
in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their 
conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. 
They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively 
about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient 
students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that 
which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments  
using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, 
even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an 
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argument applies. Students at all grades can listen to or read the arguments of others, decide whether they make sense, and 
ask useful questions to clarify or improve the arguments. Students build proofs by induction and proofs by contradiction.  
CA 3.1 (for higher mathematics only).

4) Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society,  
and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle 
grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high 
school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest 
depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions 
and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify 
important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, 
flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their 
mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model 
if it has not served its purpose. 

5) Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include 
pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical 
package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or 
course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and 
their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated  
using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. 
When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, 
explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able 
to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or 
solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6) Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with 
others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently  
and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with 
quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision  
appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other.  
By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7) Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that 
three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how 
many sides the shapes have. Later, students will see 7 × 8 equals the well-remembered 7 × 5 + 7 × 3, in preparation for learn-
ing about the distributive property. In the expression x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7.  
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They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line 
for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as 
some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(x – y)2 
as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers  
x and y.

8) Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts.  
Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over 
again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check 
whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y – 2)/(x – 1) = 3.  
Noticing the regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x2 + x + 1), and (x – 1)(x3 + x2 + x + 1) 
might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically  
proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonable-
ness of their intermediate results.

Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathemat-
ics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the 
elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend 
to the need to connect the mathematical practices to mathematical content in mathematics instruction. 

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin 
with the word “understand” are often especially good opportunities to connect the practices to the content. Students who lack 
understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely 
to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situa-
tions, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back  
for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a 
student from engaging in the mathematical practices. 

In this respect, those content standards which set an expectation of understanding are potential “points of intersection”  
between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection  
are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit 
the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, 
professional development, and student achievement in mathematics.
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K–8 Standards



Kindergarten

In kindergarten, instructional time should focus on two critical areas: (1) representing, relating, and operating on whole  
numbers, initially with sets of objects; and (2) describing shapes and space. More learning time in kindergarten should be  
devoted to number than to other topics. 

(1) Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such as 
counting objects in a set; counting out a given number of objects; comparing sets or numerals; and modeling simple joining 
and separating situations with sets of objects, or eventually with equations such as 5 + 2 = 7 and 7 – 2 = 5. (Kindergarten 
students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, 
but it is not required.) Students choose, combine, and apply effective strategies for answering quantitative questions, 
including quickly recognizing the cardinalities of small sets of objects, counting and producing sets of given sizes, counting 
the number of objects in combined sets, or counting the number of objects that remain in a set after some are taken away. 

(2) Students describe their physical world using geometric ideas (e.g., shape, orientation, spatial relations) and vocabulary. 
They identify, name, and describe basic two-dimensional shapes, such as squares, triangles, circles, rectangles, and  
hexagons, presented in a variety of ways (e.g., with different sizes and orientations), as well as three-dimensional shapes 
such as cubes, cones, cylinders, and spheres. They use basic shapes and spatial reasoning to model objects in their  
environment and to construct more complex shapes.
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 Kindergarten Overview

Counting and Cardinality

 Know number names and the count sequence.

 Count to tell the number of objects.

 Compare numbers.

Operations and Algebraic Thinking

 Understand addition as putting together and adding to, and 
understand subtraction as taking apart and taking from.

Number and Operations in Base Ten

 Work with numbers 11–19 to gain foundations for place value.

Measurement and Data

 Describe and compare measurable attributes.

 Classify objects and count the number of objects in categories.

Geometry

 Identify and describe shapes.

 Analyze, compare, create, and compose shapes.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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K Kindergarten

Counting and Cardinality K.CC

Know number names and the count sequence.

1. Count to 100 by ones and by tens.

2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1).

3. Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no 
objects).

Count to tell the number of objects.

4. Understand the relationship between numbers and quantities; connect counting to cardinality.

a. When counting objects, say the number names in the standard order, pairing each object with one and only one number 
name and each number name with one and only one object.

b. Understand that the last number name said tells the number of objects counted. The number of objects is the same 
regardless of their arrangement or the order in which they were counted.

c. Understand that each successive number name refers to a quantity that is one larger.

5. Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or 
as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.

Compare numbers.

6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another 
group, e.g., by using matching and counting strategies.1

7. Compare two numbers between 1 and 10 presented as written numerals.

Operations and Algebraic Thinking K.OA

Understand addition as putting together and adding to, and understand subtraction as taking apart and taking 
from.

1. Represent addition and subtraction with objects, fingers, mental images, drawings,2 sounds (e.g., claps), acting out  
situations, verbal explanations, expressions, or equations.

2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to  
represent the problem.

3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and 
record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

4. For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or 
drawings, and record the answer with a drawing or equation.

5. Fluently add and subtract within 5.

1. Includes groups with up to ten objects.
2. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)
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Kindergarten K

Number and Operations in Base Ten K.NBT

Work with numbers 11–19 to gain foundations for place value.

1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, 
and record each composition or decomposition by a drawing or equation (e.g., 18 = 10 + 8); understand that these  
numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

Measurement and Data K.MD

Describe and compare measurable attributes.

1.  Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single 
object.

2.  Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the  
attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as 
taller/shorter.

Classify objects and count the number of objects in each category.

3.  Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.3

Geometry K.G

Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and 
spheres).

1.  Describe objects in the environment using names of shapes, and describe the relative positions of these objects using 
terms such as above, below, beside, in front of, behind, and next to.

2.  Correctly name shapes regardless of their orientations or overall size.

3.  Identify shapes as two-dimensional (lying in a plane, “flat”) or three-dimensional (“solid”).

Analyze, compare, create, and compose shapes.

4.  Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language  
to describe their similarities, differences, parts (e.g., number of sides and vertices/“corners”) and other attributes  
(e.g., having sides of equal length).

5.  Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.

6.  Compose simple shapes to form larger shapes. For example, “Can you join these two triangles with full sides touching to 
make a rectangle?”

3. Limit category counts to be less than or equal to 10.

Kindergarten K–8 Standards  | 13



Grade 1

In grade 1, instructional time should focus on four critical areas: (1) developing understanding of addition, subtraction, and 
strategies for addition and subtraction within 20; (2) developing understanding of whole number relationships and place value, 
including grouping in tens and ones; (3) developing understanding of linear measurement and measuring lengths as iterating 
length units; and (4) reasoning about attributes of, and composing and decomposing geometric shapes.

(1) Students develop strategies for adding and subtracting whole numbers based on their prior work with small numbers. They 
use a variety of models, including discrete objects and length-based models (e.g., cubes connected to form lengths), to 
model add-to, take-from, put-together, take-apart, and compare situations to develop meaning for the operations of addition  
and subtraction, and to develop strategies to solve arithmetic problems with these operations. Students understand 
connections between counting and addition and subtraction (e.g., adding two is the same as counting on two). They use 
properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these 
properties (e.g., “making tens”) to solve addition and subtraction problems within 20. By comparing a variety of solution 
strategies, children build their understanding of the relationship between addition and subtraction. 

(2) Students develop, discuss, and use efficient, accurate, and generalizable methods to add within 100 and subtract multiples 
of 10. They compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative  
sizes. They think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers  
11 to 19 as composed of a ten and some ones). Through activities that build number sense, they understand the order of 
the counting numbers and their relative magnitudes. 

(3) Students develop an understanding of the meaning and processes of measurement, including underlying concepts such as 
iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for 
indirect measurement.1

(4) Students compose and decompose plane or solid figures (e.g., put two triangles together to make a quadrilateral) and build 
understanding of part-whole relationships as well as the properties of the original and composite shapes. As they combine 
shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine  
how they are alike and different, to develop the background for measurement and for initial understandings of properties 
such as congruence and symmetry.

1. Students should apply the principle of transitivity of measurement to make indirect comparisons, but they need not use this technical term. 
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 Grade 1 Overview

Operations and Algebraic Thinking

 Represent and solve problems involving addition and sub-
traction.

 Understand and apply properties of operations and the rela-
tionship between addition and subtraction.

 Add and subtract within 20.

 Work with addition and subtraction equations.

Number and Operations in Base Ten

 Extend the counting sequence.

 Understand place value.

 Use place value understanding and properties of operations 
to add and subtract.

Measurement and Data

 Measure lengths indirectly and by iterating length units.

 Tell and write time.

 Represent and interpret data.

Geometry

 Reason with shapes and their attributes.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique 
the reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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1 Grade 1

Operations and Algebraic Thinking 1.OA

Represent and solve problems involving addition and subtraction.
1.  Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting  

together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with  
a symbol for the unknown number to represent the problem.21

2.  Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using 
objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Understand and apply properties of operations and the relationship between addition and subtraction.
3.  Apply properties of operations as strategies to add and subtract.3 Examples: If 8 + 3 = 11 is known, then 3 + 8 = 11 is also 

known. (Commutative property of addition.) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so  
2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.)

4.  Understand subtraction as an unknown-addend problem. For example, subtract 10 – 8 by finding the number that makes 10 
when added to 8.

Add and subtract within 20.
5.  Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

6.  Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as  
counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 =  
13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one 
knows 12 – 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 
6 + 6 + 1 = 12 + 1 = 13).

Work with addition and subtraction equations.
7.  Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. 

For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.

8.  Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, 
determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 =  – 3, 6 + 6 = .

Number and Operations in Base Ten 1.NBT

Extend the counting sequence.
1. Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of 

objects with a written numeral.

Understand place value.
2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as 

special cases:

a. 10 can be thought of as a bundle of ten ones—called a “ten.”

b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.

c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens  
(and 0 ones).

2. See Glossary, Table 1.
tudents need not use formal terms for these properties.
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Grade 1 1

3.  Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with 
the symbols >, =, and <.

Use place value understanding and properties of operations to add and subtract.

4.  Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple 
of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relation- 
ship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand 
that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

5.  Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning 
used.

6.  Subtract multiples of 10 in the range 10–90 from multiples of 10 in the range 10–90 (positive or zero differences), using  
concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between  
addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Measurement and Data 1.MD

Measure lengths indirectly and by iterating length units.

1. Order three objects by length; compare the lengths of two objects indirectly by using a third object.

2.  Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length 
unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it 
with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units 
with no gaps or overlaps.

Tell and write time.

3.  Tell and write time in hours and half-hours using analog and digital clocks.

Represent and interpret data.

4.  Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of 
data points, how many in each category, and how many more or less are in one category than in another.

Geometry 1.G

Reason with shapes and their attributes.

1.  Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., 
color, orientation, overall size); build and draw shapes to possess defining attributes.

2.  Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-
dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite 
shape, and compose new shapes from the composite shape.42

3.  Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and 
quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares.  
Understand for these examples that decomposing into more equal shares creates smaller shares.

4. Students do not need to learn formal names such as “right rectangular prism.”
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Grade 2

In grade 2, instructional time should focus on four critical areas: (1) extending understanding of base-ten notation; (2) building 
fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes.

(1) Students extend their understanding of the base-ten system. This includes ideas of counting in fives, tens, and multiples of 
hundreds, tens, and ones, as well as number relationships involving these units, including comparing. Students understand 
multi-digit numbers (up to 1000) written in base-ten notation, recognizing that the digits in each place represent amounts 
of thousands, hundreds, tens, or ones (e.g., 853 is 8 hundreds + 5 tens + 3 ones). 

(2) Students use their understanding of addition to develop fluency with addition and subtraction within 100. They solve  
problems within 1000 by applying their understanding of models for addition and subtraction, and they develop, discuss, 
and use efficient, accurate, and generalizable methods to compute sums and differences of whole numbers in base-ten  
notation, using their understanding of place value and the properties of operations. They select and accurately apply  
methods that are appropriate for the context and the numbers involved to mentally calculate sums and differences for  
numbers with only tens or only hundreds. 

(3) Students recognize the need for standard units of measure (centimeter and inch) and they use rulers and other measure-
ment tools with the understanding that linear measure involves an iteration of units. They recognize that the smaller the 
unit, the more iterations they need to cover a given length. 

(4) Students describe and analyze shapes by examining their sides and angles. Students investigate, describe, and reason 
about decomposing and combining shapes to make other shapes. Through building, drawing, and analyzing two- and three-
dimensional shapes, students develop a foundation for understanding area, volume, congruence, similarity, and symmetry 
in later grades.
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 Grade 2 Overview

Operations and Algebraic Thinking

 Represent and solve problems involving addition and  
subtraction.

 Add and subtract within 20.

 Work with equal groups of objects to gain foundations for 
multiplication.

Number and Operations in Base Ten

 Understand place value.

 Use place value understanding and properties of operations 
to add and subtract.

Measurement and Data

 Measure and estimate lengths in standard units.

 Relate addition and subtraction to length.

 Work with time and money.

 Represent and interpret data.

Geometry

 Reason with shapes and their attributes.

Mathematical Practices

1.  Make sense of problems and persevere in  
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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2 Grade 2

Operations and Algebraic Thinking 2.OA

Represent and solve problems involving addition and subtraction.

1.  Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking 
from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations 
with a symbol for the unknown number to represent the problem.1

Add and subtract within 20.

2.  Fluently add and subtract within 20 using mental strategies.2 By end of Grade 2, know from memory all sums of two  
one-digit numbers.

Work with equal groups of objects to gain foundations for multiplication.

3.  Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or  
counting them by 2s; write an equation to express an even number as a sum of two equal addends.

4.  Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns;  
write an equation to express the total as a sum of equal addends.

Number and Operations in Base Ten 2.NBT

Understand place value.

1.  Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 
hundreds, 0 tens, and 6 ones. Understand the following as special cases:

a.  100 can be thought of as a bundle of ten tens—called a “hundred.”

b.  The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine 
hundreds (and 0 tens and 0 ones).

2.  Count within 1000; skip-count by 2s, 5s, 10s, and 100s. CA

3.  Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.

4.  Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to 
record the results of comparisons.

Use place value understanding and properties of operations to add and subtract.

5.  Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relation-
ship between addition and subtraction.

6.  Add up to four two-digit numbers using strategies based on place value and properties of operations.

7.  Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of  
operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand 
that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and 
ones; and sometimes it is necessary to compose or decompose tens or hundreds.

1. See Glossary, Table 1.
2. See standard 1.OA.6 for a list of mental strategies.
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Grade 2 2

7.1 Use estimation strategies to make reasonable estimates in problem solving. CA

8.  Mentally add 10 or 100 to a given number 100–900, and mentally subtract 10 or 100 from a given number 100–900.

9.  Explain why addition and subtraction strategies work, using place value and the properties of operations.31

Measurement and Data 2.MD

Measure and estimate lengths in standard units.

1.  Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and  
measuring tapes.

2.  Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the 
two measurements relate to the size of the unit chosen.

3.  Estimate lengths using units of inches, feet, centimeters, and meters.

4.  Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard 
length unit.

Relate addition and subtraction to length.

5.  Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by 
using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.

6.  Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the 
numbers 0, 1, 2, . . . , and represent whole-number sums and differences within 100 on a number line diagram.

Work with time and money.

7.  Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m. Know relationships of 
time (e.g., minutes in an hour, days in a month, weeks in a year). CA

8.  Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $ and ¢ symbols appropriately. 
Example: If you have 2 dimes and 3 pennies, how many cents do you have?

Represent and interpret data.

9.  Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated 
measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off 
in whole-number units.

10.  Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve 
simple put-together, take-apart, and compare problems4 using information presented in a bar graph.

3. Explanations may be supported by drawings or objects.
4. See Glossary, Table 1.

Grade 2 K–8 Standards  | 21



2 Grade 2

Geometry 2.G

Reason with shapes and their attributes.

1.  Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal 
faces.5 Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.

2.  Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

3.  Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half 
of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical 
wholes need not have the same shape.

2 

5. Sizes are compared directly or visually, not compared by measuring. 
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Grade 3

In grade 3, instructional time should focus on four critical areas: (1) developing understanding of multiplication and division  
and strategies for multiplication and division within 100; (2) developing understanding of fractions, especially unit fractions 
(fractions with numerator 1); (3) developing understanding of the structure of rectangular arrays and of area; and (4) describing 
and analyzing two-dimensional shapes. 

(1) Students develop an understanding of the meanings of multiplication and division of whole numbers through activities and 
problems involving equal-sized groups, arrays, and area models; multiplication is finding an unknown product, and division 
is finding an unknown factor in these situations. For equal-sized group situations, division can require finding the unknown 
number of groups or the unknown group size. Students use properties of operations to calculate products of whole numbers,  
using increasingly sophisticated strategies based on these properties to solve multiplication and division problems involving 
single-digit factors. By comparing a variety of solution strategies, students learn the relationship between multiplication and 
division. 

(2) Students develop an understanding of fractions, beginning with unit fractions. Students view fractions in general as being 
built out of unit fractions, and they use fractions along with visual fraction models to represent parts of a whole. Students 
understand that the size of a fractional part is relative to the size of the whole. For example, 1/2 of the paint in a small 
bucket could be less paint than 1/3 of the paint in a larger bucket, but 1/3 of a ribbon is longer than 1/5 of the same  
ribbon because when the ribbon is divided into 3 equal parts, the parts are longer than when the ribbon is divided into  
5 equal parts. Students are able to use fractions to represent numbers equal to, less than, and greater than one. They  
solve problems that involve comparing fractions by using visual fraction models and strategies based on noticing equal 
numerators or denominators. 

(3) Students recognize area as an attribute of two-dimensional regions. They measure the area of a shape by finding the total 
number of same-size units of area required to cover the shape without gaps or overlaps, a square with sides of unit length 
being the standard unit for measuring area. Students understand that rectangular arrays can be decomposed into identical  
rows or into identical columns. By decomposing rectangles into rectangular arrays of squares, students connect area to 
multiplication, and justify using multiplication to determine the area of a rectangle. 

(4) Students describe, analyze, and compare properties of two-dimensional shapes. They compare and classify shapes by their 
sides and angles, and connect these with definitions of shapes. Students also relate their fraction work to geometry by 
expressing the area of part of a shape as a unit fraction of the whole.
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 Grade 3 Overview

Operations and Algebraic Thinking

 Represent and solve problems involving multiplication and  
division.

 Understand properties of multiplication and the relationship  
between multiplication and division.

 Multiply and divide within 100.

 Solve problems involving the four operations, and identify  
and explain patterns in arithmetic.

Number and Operations in Base Ten

 Use place value understanding and properties of operations  
to perform multi-digit arithmetic.

Number and Operations—Fractions

 Develop understanding of fractions as numbers.

Measurement and Data

 Solve problems involving measurement and estimation of  
intervals of time, liquid volumes, and masses of objects.

 Represent and interpret data.

 Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

 Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area  
measures.

Geometry

 Reason with shapes and their attributes.

Mathematical Practices

1.  Make sense of problems and persevere in  
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Grade 3

Operations and Algebraic Thinking 3.OA

Represent and solve problems involving multiplication and division.

1.  Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each.  
For example, describe a context in which a total number of objects can be expressed as 5 × 7. 

2.  Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 
objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 
objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56÷8.

3.  Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measure-
ment quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.1

4.  Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, 
determine the unknown number that makes the equation true in each of the equations 8 × ? = 48, 5 =  ÷ 3, 6 × 6 = ?.

Understand properties of multiplication and the relationship between multiplication and division.

5. Apply properties of operations as strategies to multiply and divide.2 Examples: If 6 × 4 = 24 is known, then 4 × 6 = 24 is 
also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or  
by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16,  
one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.)

6. Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when 
multiplied by 8.

Multiply and divide within 100.

7. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division  
(e.g., knowing that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from 
memory all products of two one-digit numbers.

Solve problems involving the four operations, and identify and explain patterns in arithmetic.

8.  Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing  
for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies 
including rounding.32

9.  Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using  
properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number 
can be decomposed into two equal addends.

Number and Operations in Base Ten 3.NBT

Use place value understanding and properties of operations to perform multi-digit arithmetic.4

1. Use place value understanding to round whole numbers to the nearest 10 or 100.

1. See Glossary, Table 2.
2. Students need not use formal terms for these properties.
3. This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in 
the conventional order when there are no parentheses to specify a particular order (Order of Operations).
4. A range of algorithms may be used.



3 Grade 3

2.  Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations,  
and/or the relationship between addition and subtraction.

3.  Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9 × 80, 5 × 60) using strategies based on 
place value and properties of operations.

Number and Operations—Fractions5 3.NF

Develop understanding of fractions as numbers.3

1.  Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a 
fraction a/b as the quantity formed by a parts of size 1/b.

2.  Understand a fraction as a number on the number line; represent fractions on a number line diagram.

a. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning 
it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the 
number 1/b on the number line.

b. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting 
interval has size a/b and that its endpoint locates the number a/b on the number line.

3.  Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. 

b. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are  
equivalent, e.g., by using a visual fraction model.

c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples:  
Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.

d.  Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that 
comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the 
symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Measurement and Data 3.MD

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and 
subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.

2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters 
(l).6 Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the 
same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.74

5. Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.
6. Excludes compound units such as cm3 and finding the geometric volume of a container.
7. Excludes multiplicative comparison problems (problems involving notions of “times as much”; see Glossary, Table 2).
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Grade 3 3

Represent and interpret data.

3.  Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-
step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw 
a bar graph in which each square in the bar graph might represent 5 pets.

4.  Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by 
making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.

Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

5.  Recognize area as an attribute of plane figures and understand concepts of area measurement.

a.  A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to 
measure area.

b.  A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square 
units.

6.  Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).

7.  Relate area to the operations of multiplication and addition.

a.  Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be 
found by multiplying the side lengths.

b.  Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and 
mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.

c.  Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the 
sum of a × b and a × c. Use area models to represent the distributive property in mathematical reasoning.

d.  Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and 
adding the areas of the non-overlapping parts, applying this technique to solve real-world problems.

Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear 
and area measures.

8.  Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side 
lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the 
same area and different perimeters.

Geometry 3.G

Reason with shapes and their attributes.

1.  Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having 
four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses,  
rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of 
these subcategories.

2.  Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, 
partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.
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Grade 4

In grade 4, instructional time should focus on three critical areas: (1) developing understanding and fluency with multi-digit 
multiplication, and developing understanding of dividing to find quotients involving multi-digit dividends; (2) developing an  
understanding of fraction equivalence, addition and subtraction of fractions with like denominators, and multiplication of  
fractions by whole numbers; (3) understanding that geometric figures can be analyzed and classified based on their properties, 
such as having parallel sides, perpendicular sides, particular angle measures, and symmetry.

(1) Students generalize their understanding of place value to 1,000,000, understanding the relative sizes of numbers in each 
place. They apply their understanding of models for multiplication (equal-sized groups, arrays, area models), place value, 
and properties of operations, in particular the distributive property, as they develop, discuss, and use efficient, accurate, 
and generalizable methods to compute products of multi-digit whole numbers. Depending on the numbers and the context, 
they select and accurately apply appropriate methods to estimate or mentally calculate products. They develop fluency with 
efficient procedures for multiplying whole numbers; understand and explain why the procedures work based on place value 
and properties of operations; and use them to solve problems. Students apply their understanding of models for division, 
place value, properties of operations, and the relationship of division to multiplication as they develop, discuss, and use 
efficient, accurate, and generalizable procedures to find quotients involving multi-digit dividends. They select and accurately 
apply appropriate methods to estimate and mentally calculate quotients, and interpret remainders based upon the context.

(2) Students develop understanding of fraction equivalence and operations with fractions. They recognize that two different 
fractions can be equal (e.g., 15/9 = 5/3), and they develop methods for generating and recognizing equivalent fractions. 
Students extend previous understandings about how fractions are built from unit fractions, composing fractions from unit 
fractions, decomposing fractions into unit fractions, and using the meaning of fractions and the meaning of multiplication  
to multiply a fraction by a whole number. 

(3) Students describe, analyze, compare, and classify two-dimensional shapes. Through building, drawing, and analyzing  
two-dimensional shapes, students deepen their understanding of properties of two-dimensional objects and the use of 
them to solve problems involving symmetry.
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 Grade 4 Overview

Operations and Algebraic Thinking

 Use the four operations with whole numbers to solve problems.

 Gain familiarity with factors and multiples.

 Generate and analyze patterns.

Number and Operations in Base Ten

 Generalize place value understanding for multi-digit whole  
numbers.

 Use place value understanding and properties of operations  
to perform multi-digit arithmetic.

Number and Operations—Fractions

 Extend understanding of fraction equivalence and ordering.

 Build fractions from unit fractions by applying and extending  
previous understandings of operations on whole numbers.

 Understand decimal notation for fractions, and compare  
decimal fractions.

Measurement and Data

 Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

 Represent and interpret data.

 Geometric measurement: understand concepts of angle and measure angles.

Geometry

 Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.

Grade 4 K–8 Standards | 29



30 | K–8 Standards

Grade 44

Operations and Algebraic Thinking 4.OA

Use the four operations with whole numbers to solve problems.

1.  Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 
7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

2.  Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a 
symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.1

3.  Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, 
including problems in which remainders must be interpreted. Represent these problems using equations with a letter  
standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation  
strategies including rounding. 

Gain familiarity with factors and multiples.

4.  Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its 
factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine 
whether a given whole number in the range 1–100 is prime or composite.

Generate and analyze patterns.

5.  Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit 
in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence 
and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will 
continue to alternate in this way.

Number and Operations in Base Ten2 4.NBT

Generalize place value understanding for multi-digit whole numbers.

1.  Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its 
right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.

2.  Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi- 
digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

3.  Use place value understanding to round multi-digit whole numbers to any place.

Use place value understanding and properties of operations to perform multi-digit arithmetic.

4.  Fluently add and subtract multi-digit whole numbers using the standard algorithm.

5.  Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using 
strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, 
rectangular arrays, and/or area models.

6.  Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based  
on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and 
explain the calculation by using equations, rectangular arrays, and/or area models.2 

1. See Glossary, Table 2.

2. Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.

Grade 4



Grade 4 4

Number and Operations—Fractions3 4.NF

Extend understanding of fraction equivalence and ordering.1

1.  Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how 
the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to 
recognize and generate equivalent fractions.

2.  Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or 
numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two 
fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, 
e.g., by using a visual fraction model.

Build fractions from unit fractions by applying and extending previous understandings of operations on whole 
numbers.

3.  Understand a fraction a/b with a > 1 as a sum of fractions 1/b.

a.  Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

b.  Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each  
decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples:  
3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.

c.  Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent  
fraction, and/or by using properties of operations and the relationship between addition and subtraction.

d.  Solve word problems involving addition and subtraction of fractions referring to the same whole and having like  
denominators, e.g., by using visual fraction models and equations to represent the problem.

4.  Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

a.  Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the  
product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4).

b.  Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole  
number. For example, use a visual fraction model to express 3 × (2/5) as 6 × (1/5), recognizing this product as 6/5. 
(In general, n × (a/b) = (n × a)/b.)

c.  Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and 
equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and 
there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers 
does your answer lie?

Understand decimal notation for fractions, and compare decimal fractions.

5.  Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two  
fractions with respective denominators 10 and 100.4 For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.2

6.  Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 
0.62 meters; locate 0.62 on a number line diagram.

3. Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

4. Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and  
subtraction with unlike denominators in general is not a requirement at this grade.
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7.  Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when  
the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the  
conclusions, e.g., by using the number line or another visual model. CA

Measurement and Data 4.MD

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

1.  Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. 
Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measure-
ment equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft 
snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), . . .

2.  Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, 
and money, including problems involving simple fractions or decimals, and problems that require expressing measurements 
given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line 
diagrams that feature a measurement scale.

3.  Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width 
of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation 
with an unknown factor.

Represent and interpret data.

4.  Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving  
addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and 
interpret the difference in length between the longest and shortest specimens in an insect collection.

Geometric measurement: understand concepts of angle and measure angles.

5.  Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand  
concepts of angle measurement:

a.  An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering 
the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 
1/360 of a circle is called a “one-degree angle,” and can be used to measure angles.

b.  An angle that turns through n one-degree angles is said to have an angle measure of n degrees.

6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

7.  Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the 
whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a 
diagram in real-world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
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Geometry 4.G

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

1.  Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in 
two-dimensional figures.

2.  Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or 
absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. (Two-dimensional 
shapes should include special triangles, e.g., equilateral, isosceles, scalene, and special quadrilaterals, e.g., rhombus, 
square, rectangle, parallelogram, trapezoid.) CA

3.  Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded 
along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
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Grade 5

In grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of  
fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit  
fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to two-digit divisors, 
integrating decimal fractions into the place value system and developing understanding of operations with decimals to  
hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.

(1) Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions 
with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and 
differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplica-
tion and division, and the relationship between multiplication and division to understand and explain why the procedures for 
multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers 
and whole numbers by unit fractions.) 

(2) Students develop understanding of why division procedures work based on the meaning of base-ten numerals and  
properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply 
their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals 
to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use  
the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers  
(i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the 
procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to 
hundredths efficiently and accurately. 

(3) Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by 
finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand 
that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, 
and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes 
and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure 
necessary attributes of shapes in order to determine volumes to solve real-world and mathematical problems.
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Operations and Algebraic Thinking

 Write and interpret numerical expressions.

 Analyze patterns and relationships.

Number and Operations in Base Ten

 Understand the place value system.

 Perform operations with multi-digit whole numbers and with  
decimals to hundredths.

Number and Operations—Fractions

 Use equivalent fractions as a strategy to add and subtract  
fractions.

 Apply and extend previous understandings of multiplication  
and division to multiply and divide fractions.

Measurement and Data

 Convert like measurement units within a given measurement  
system.

 Represent and interpret data.

 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

Geometry

 Graph points on the coordinate plane to solve real-world and mathematical problems.

 Classify two-dimensional figures into categories based on their properties.

Mathematical Practices

1.  Make sense of problems and persevere in  
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.

 Grade 5 Overview



5 Grade 5

Operations and Algebraic Thinking 5.OA

Write and interpret numerical expressions.

1.  Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

2.  Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating 
them. For example, express the calculation “add 8 and 7, then multiply by 2” as 2 × (8 + 7). Recognize that  
3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.

2.1 Express a whole number in the range 2–50 as a product of its prime factors. For example, find the prime factors of 24 and 
express 24 as 2 × 2 × 2 × 3. CA

Analyze patterns and relationships.

3.  Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form 
ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. 
For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0,  
generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms 
in the other sequence. Explain informally why this is so.

Number and Operations in Base Ten 5.NBT

Understand the place value system.

1.  Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its 
right and 1/10 of what it represents in the place to its left.

2.  Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in 
the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents 
to denote powers of 10.

3.  Read, write, and compare decimals to thousandths.

a.  Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g.,  
347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000).

b.  Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to 
record the results of comparisons.

4.  Use place value understanding to round decimals to any place.

Perform operations with multi-digit whole numbers and with decimals to hundredths.

5.  Fluently multiply multi-digit whole numbers using the standard algorithm.

6.  Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based 
on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and 
explain the calculation by using equations, rectangular arrays, and/or area models.

7.  Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on 
place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a 
written method and explain the reasoning used.
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Number and Operations—Fractions 5.NF

Use equivalent fractions as a strategy to add and subtract fractions.

1.  Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent 
fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example,  
2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.)

2.  Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike 
denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and 
number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an 
incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2.

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

3.  Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division  
of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or 
equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied 
by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people 
want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what 
two whole numbers does your answer lie? 

4.  Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

a. Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence 
of operations a × q ÷ b. For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context 
for this equation. Do the same with (2/3) × (4/5) = 8/15. (In general, (a/b) × (c/d) = ac/bd.)

b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side 
lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side 
lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.  Interpret multiplication as scaling (resizing), by:

a.  Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing 
the indicated multiplication.

b.  Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given 
number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a 
given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of 
fraction equivalence a/b = (n × a)/(n × b) to the effect of multiplying a/b by 1.

6.  Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or 
equations to represent the problem.

7.  Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit 
fractions.1

a.  Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create  
a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between  
multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.

1. Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between  
multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.
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b.  Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context 
for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and 
division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.

c.  Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers 
by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much 
chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups 
of raisins?

Measurement and Data 5.MD

Convert like measurement units within a given measurement system.

1.  Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to  
0.05 m), and use these conversions in solving multi-step, real-world problems.

Represent and interpret data.

2.  Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions 
for this grade to solve problems involving information presented in line plots. For example, given different measurements of 
liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were  
redistributed equally.

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

3.  Recognize volume as an attribute of solid figures and understand concepts of volume measurement.

a.  A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic unit” of volume, and can be used to  
measure volume.

b.  A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

4.  Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

5.  Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving 
volume.

a.  Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show 
that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height 
by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative 
property of multiplication.

b.  Apply the formulas V = l × w × h and V = b × h for rectangular prisms to find volumes of right rectangular prisms with 
whole-number edge lengths in the context of solving real-world and mathematical problems.

c.  Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms 
by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.
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Geometry 5.G

Graph points on the coordinate plane to solve real-world and mathematical problems.

1.  Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines  
(the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of 
numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction 
of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that 
the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

2.  Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and  
interpret coordinate values of points in the context of the situation.

Classify two-dimensional figures into categories based on their properties.

3.  Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that cat-
egory. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

4.  Classify two-dimensional figures in a hierarchy based on properties.
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Grade 6

In grade 6, instructional time should focus on four critical areas: (1) connecting ratio and rate to whole number multiplication 
and division, and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and 
extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, 
and using expressions and equations; and (4) developing understanding of statistical thinking. 

(1) Students use reasoning about multiplication and division to solve ratio and rate problems about quantities. By viewing 
equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by 
analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication 
and division with ratios and rates. Thus students expand the scope of problems for which they can use multiplication and 
division to solve problems, and they connect ratios and fractions. Students solve a wide variety of problems involving  
ratios and rates.

(2) Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multipli-
cation and division to understand and explain why the procedures for dividing fractions make sense. Students use these 
operations to solve problems. Students extend their previous understandings of number and the ordering of numbers to  
the full system of rational numbers, which includes negative rational numbers, and in particular negative integers. They 
reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of  
the coordinate plane.

(3) Students understand the use of variables in mathematical expressions. They write expressions and equations that  
correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students under-
stand that expressions in different forms can be equivalent, and they use the properties of operations to rewrite expressions 
in equivalent forms. Students know that the solutions of an equation are the values of the variables that make the equation 
true. Students use properties of operations and the idea of maintaining the equality of both sides of an equation to solve 
simple one-step equations. Students construct and analyze tables, such as tables of quantities that are in equivalent ratios, 
and they use equations (such as 3x = y) to describe relationships between quantities.

(4) Building on and reinforcing their understanding of number, students begin to develop their ability to think statistically. 
Students recognize that a data distribution may not have a definite center and that different ways to measure center yield 
different values. The median measures center in the sense that it is roughly the middle value. The mean measures center 
in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, 
and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range or mean 
absolute deviation) can also be useful for summarizing data because two very different sets of data can have the same 
mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, 
identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected.

 Students in grade 6 also build on their work with area in elementary school by reasoning about relationships among shapes 
to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by 
decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, 
students discuss, develop, and justify formulas for areas of triangles and parallelograms. Students find areas of polygons 
and surface areas of prisms and pyramids by decomposing them into pieces whose area they can determine. They reason 
about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to 
fractional side lengths. They prepare for work on scale drawings and constructions in grade 7 by drawing polygons in the 
coordinate plane.
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 Grade 6 Overview

Ratios and Proportional Relationships

 Understand ratio concepts and use ratio reasoning to solve  
problems.

The Number System

 Apply and extend previous understandings of multiplication  
and division to divide fractions by fractions.

 Compute fluently with multi-digit numbers and find common  
factors and multiples.

 Apply and extend previous understandings of numbers to  
the system of rational numbers.

Expressions and Equations

 Apply and extend previous understandings of arithmetic  
to algebraic expressions.

 Reason about and solve one-variable equations and  
inequalities.

 Represent and analyze quantitative relationships between  
dependent and independent variables.

Geometry

 Solve real-world and mathematical problems involving area, surface area, and volume.

Statistics and Probability

 Develop understanding of statistical variability.

 Summarize and describe distributions.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique  
the reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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6 Grade 6

Ratios and Proportional Relationships 6.RP

Understand ratio concepts and use ratio reasoning to solve problems.

1.  Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For  
example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” 
“For every vote candidate A received, candidate C received nearly three votes.”

2.  Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a 
ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for 
each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”1

3.  Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent 
ratios, tape diagrams, double number line diagrams, or equations.

a.  Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, 
and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

b.  Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to 
mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

c.  Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve  
problems involving finding the whole, given a part and the percent.

d.  Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or 
dividing quantities.

The Number System 6.NS

Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by 
using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) ÷ (3/4) 
and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain 
that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each 
person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How 
wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?

Compute fluently with multi-digit numbers and find common factors and multiples.

2.  Fluently divide multi-digit numbers using the standard algorithm.

3.  Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

4.  Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole  
numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a com-
mon factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2).

1. Expectations for unit rates in this grade are limited to non-complex fractions.
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Apply and extend previous understandings of numbers to the system of rational numbers.

5.  Understand that positive and negative numbers are used together to describe quantities having opposite directions or 
values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric 
charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in 
each situation.

6.  Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar 
from previous grades to represent points on the line and in the plane with negative number coordinates.

a.  Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that 
the opposite of the opposite of a number is the number itself, e.g., –(–3) = 3, and that 0 is its own opposite.

b.  Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize 
that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or 
both axes.

c.  Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position 
pairs of integers and other rational numbers on a coordinate plane.

7.  Understand ordering and absolute value of rational numbers.

a.  Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For  
example, interpret –3 > –7 as a statement that –3 is located to the right of –7 on a number line oriented from left to right.

b.  Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write  
–3°C > –7°C to express the fact that –3°C is warmer than –7°C.

c.  Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value 
as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of  
–30 dollars, write |–30| = 30 to describe the size of the debt in dollars.

d.  Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance  
less than –30 dollars represents a debt greater than 30 dollars.

8.  Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use 
of coordinates and absolute value to find distances between points with the same first coordinate or the same second 
coordinate.

Expressions and Equations 6.EE

Apply and extend previous understandings of arithmetic to algebraic expressions.

1.  Write and evaluate numerical expressions involving whole-number exponents.

2.  Write, read, and evaluate expressions in which letters stand for numbers.

a.  Write expressions that record operations with numbers and with letters standing for numbers. For example, express  
the calculation “Subtract y from 5” as 5 – y.

b.  Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one 
or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two 
factors; view (8 + 7) as both a single entity and a sum of two terms.
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Grade 6

c.  Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-
world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional 
order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas 
V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.

3.  Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to  
the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression  
24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the 
equivalent expression 3y.

4.  Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which 
value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same 
number regardless of which number y stands for.

Reason about and solve one-variable equations and inequalities.

5.  Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if 
any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes 
an equation or inequality true.

6.  Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand 
that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

7.  Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in 
which p, q and x are all nonnegative rational numbers.

8.  Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. 
Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities 
on number line diagrams.

Represent and analyze quantitative relationships between dependent and independent variables.

9.  Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an  
equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the 
independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, 
and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered  
pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.

Geometry 6.G

Solve real-world and mathematical problems involving area, surface area, and volume.

1.  Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or  
decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical 
problems.

2.  Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate 
unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the 
prism. Apply the formulas V = l w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in 
the context of solving real-world and mathematical problems.



Grade 6 6

3.  Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining 
points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving  
real-world and mathematical problems.

4.  Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface 
area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Statistics and Probability 6.SP

Develop understanding of statistical variability.

1.  Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in 
the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a 
statistical question because one anticipates variability in students’ ages.

2.  Understand that a set of data collected to answer a statistical question has a distribution which can be described by its 
center, spread, and overall shape.

3.  Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a  
measure of variation describes how its values vary with a single number.

Summarize and describe distributions.

4.  Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

5.  Summarize numerical data sets in relation to their context, such as by:

a.  Reporting the number of observations.

b.  Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.

c.  Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute 
deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference 
to the context in which the data were gathered.

d.  Relating the choice of measures of center and variability to the shape of the data distribution and the context in which 
the data were gathered.
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Grade 7

In grade 7, instructional time should focus on four critical areas: (1) developing understanding of and applying proportional 
relationships; (2) developing understanding of operations with rational numbers and working with expressions and linear  
equations; (3) solving problems involving scale drawings and informal geometric constructions, and working with two- and 
three-dimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about  
populations based on samples.

(1) Students extend their understanding of ratios and develop understanding of proportionality to solve single- and multi-step 
problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems,  
including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students solve problems about 
scale drawings by relating corresponding lengths between the objects or by using the fact that relationships of lengths 
within an object are preserved in similar objects. Students graph proportional relationships and understand the unit rate 
informally as a measure of the steepness of the related line, called the slope. They distinguish proportional relationships 
from other relationships.

(2) Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating deci-
mal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, 
multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between 
addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers 
in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for 
adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they 
formulate expressions and equations in one variable and use these equations to solve problems. 

(3) Students continue their work with area from grade 6, solving problems involving the area and circumference of a circle and 
surface area of three-dimensional objects. In preparation for work on congruence and similarity in grade 8 they reason 
about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they 
gain familiarity with the relationships between angles formed by intersecting lines. Students work with three-dimensional 
figures, relating them to two-dimensional figures by examining cross-sections. They solve real-world and mathematical  
problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles,  
quadrilaterals, polygons, cubes, and right prisms.

(4) Students build on their previous work with single data distributions to compare two data distributions and address  
questions about differences between populations. They begin informal work with random sampling to generate data sets 
and learn about the importance of representative samples for drawing inferences. 
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 Grade 7 Overview

Ratios and Proportional Relationships

 Analyze proportional relationships and use them to solve  
real-world and mathematical problems.

The Number System

 Apply and extend previous understandings of operations  
with fractions to add, subtract, multiply, and divide  
rational numbers.

Expressions and Equations

 Use properties of operations to generate equivalent  
expressions.

 Solve real-life and mathematical problems using numerical  
and algebraic expressions and equations.

Geometry

 Draw, construct and describe geometrical figures and describe  
the relationships between them.

 Solve real-life and mathematical problems involving angle  
measure, area, surface area, and volume.

Statistics and Probability

 Use random sampling to draw inferences about a population.

 Draw informal comparative inferences about two populations.

 Investigate chance processes and develop, use, and evaluate probability models.

Mathematical Practices

1.  Make sense of problems and persevere in  
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique  
the reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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7 Grade 7

Ratios and Proportional Relationships 7.RP

Analyze proportional relationships and use them to solve real-world and mathematical problems.

1.  Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in 
like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex  
fraction ½/¼ miles per hour, equivalently 2 miles per hour.

2.  Recognize and represent proportional relationships between quantities.

a.  Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or  
graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

b.  Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of 
proportional relationships.

c.  Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items 
purchased at a constant price p, the relationship between the total cost and the number of items can be expressed  
as t = pn.

d.  Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special  
attention to the points (0, 0) and (1, r) where r is the unit rate.

3.  Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and 
markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

The Number System 7.NS

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide 
rational numbers.

1.  Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent  
addition and subtraction on a horizontal or vertical number line diagram.

a.  Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge  
because its two constituents are oppositely charged.

b.  Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on 
whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses).  
Interpret sums of rational numbers by describing real-world contexts.

c.  Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance 
between two rational numbers on the number line is the absolute value of their difference, and apply this principle in 
real-world contexts.

d.  Apply properties of operations as strategies to add and subtract rational numbers.

2.  Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational 
numbers.

a.  Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to 
satisfy the properties of operations, particularly the distributive property, leading to products such as (–1)(–1) = 1 and 
the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
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b.  Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with  
non-zero divisor) is a rational number. If p and q are integers, then –(p/q) = (–p)/q = p/(–q). Interpret quotients of 
rational numbers by describing real-world contexts.

c.  Apply properties of operations as strategies to multiply and divide rational numbers.

d.  Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates 
in 0s or eventually repeats.

3.  Solve real-world and mathematical problems involving the four operations with rational numbers.1

Expressions and Equations 7.EE

Use properties of operations to generate equivalent expressions.

1.  Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

2.  Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the 
quantities in it are related. For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.”

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

3.  Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole 
numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any 
form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and 
estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of 
her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of 
a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used 
as a check on the exact computation.

4.  Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and  
inequalities to solve problems by reasoning about the quantities.

a.  Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational 
numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying 
the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length  
is 6 cm. What is its width?

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational 
numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a 
salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an 
inequality for the number of sales you need to make, and describe the solutions.

Geometry 7.G

Draw, construct, and describe geometrical figures and describe the relationships between them.

1.  Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale 
drawing and reproducing a scale drawing at a different scale.

1. Computations with rational numbers extend the rules for manipulating fractions to complex fractions.
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2.  Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on construct-
ing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than 
one triangle, or no triangle.

3.  Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right  
rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

4.  Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of 
the relationship between the circumference and area of a circle.

5.  Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve 
simple equations for an unknown angle in a figure.

6.  Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects 
composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Statistics and Probability 7.SP

Use random sampling to draw inferences about a population.

1.  Understand that statistics can be used to gain information about a population by examining a sample of the population; 
generalizations about a population from a sample are valid only if the sample is representative of that population.  
Understand that random sampling tends to produce representative samples and support valid inferences.

2.  Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate 
multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, 
estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election  
based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

Draw informal comparative inferences about two populations.

3.  Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the 
difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of 
players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the  
variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of  
heights is noticeable.

4.  Use measures of center and measures of variability for numerical data from random samples to draw informal comparative 
inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are 
generally longer than the words in a chapter of a fourth-grade science book.

Investigate chance processes and develop, use, and evaluate probability models.

5.  Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event 
occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 
1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

6.  Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its 
long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling  
a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
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7.  Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed 
frequencies; if the agreement is not good, explain possible sources of the discrepancy.

a.  Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine 
probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will 
be selected and the probability that a girl will be selected.

b.  Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance  
process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper 
cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the  
observed frequencies?

8.  Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

a.  Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the 
sample space for which the compound event occurs.

b.  Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams.  
For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space 
which compose the event.

c.  Design and use a simulation to generate frequencies for compound events. For example, use random digits as a  
simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability 
that it will take at least 4 donors to find one with type A blood?
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Grade 8

In grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and  
equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems 
of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyz-
ing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and 
applying the Pythagorean Theorem. 

 (1) Students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. 
Students recognize equations for proportions (y/x = m or y = mx) as special linear equations (y = mx + b), understanding 
that the constant of proportionality (m) is the slope, and the graphs are lines through the origin. They understand that the 
slope (m) of a line is a constant rate of change, so that if the input or x-coordinate changes by an amount A, the output or 
y-coordinate changes by the amount m . A. Students also use a linear equation to describe the association between two 
quantities in bivariate data (such as arm span versus height for students in a classroom). At this grade, fitting the model 
and assessing its fit to the data are done informally. Interpreting the model in the context of the data requires students 
to express a relationship between the two quantities in question and to interpret components of the relationship (such as 
slope and y-intercept) in terms of the situation.

 Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding  
that when they use the properties of equality and the concept of logical equivalence, they maintain the solutions of the 
original equation. Students solve systems of two linear equations in two variables and relate the systems to pairs of lines 
in the plane; these intersect, are parallel, or are the same line. Students use linear equations, systems of linear equations, 
linear functions, and their understanding of slope of a line to analyze situations and solve problems.

(2)  Students grasp the concept of a function as a rule that assigns to each input exactly one output. They understand that 
functions describe situations where one quantity determines another. They can translate among representations and partial 
representations of functions (noting that tabular and graphical representations may be partial representations), and they 
describe how aspects of the function are reflected in the different representations.

(3)  Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and dilations, 
and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students  
show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines 
give rise to similar triangles because of the angles created when a transversal cuts parallel lines. Students understand the 
statement of the Pythagorean Theorem and its converse, and can explain why the Pythagorean Theorem holds, for example, 
by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points on 
the coordinate plane, to find lengths, and to analyze polygons. Students complete their work on volume by solving problems 
involving cones, cylinders, and spheres.
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 Grade 8 Overview

The Number System

 Know that there are numbers that are not rational, and  
approximate them by rational numbers. 

Expressions and Equations

 Work with radicals and integer exponents.

 Understand the connection between proportional  
relationships, lines, and linear equations.

 Analyze and solve linear equations and pairs of simultaneous  
linear equations.

Functions

 Define, evaluate, and compare functions.

 Use functions to model relationships between quantities.

Geometry

 Understand congruence and similarity using physical models,  
transparencies, or geometry software.

 Understand and apply the Pythagorean Theorem.

 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Statistics and Probability

 Investigate patterns of association in bivariate data.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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8 Grade 8

The Number System 8.NS

Know that there are numbers that are not rational, and approximate them by rational numbers.

1.  Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal  
expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion 
which repeats eventually into a rational number. 

2.  Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a  
number line diagram, and estimate the value of expressions (e.g.,π 2). For example, by truncating the decimal expansion of  
√2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Expressions and Equations 8.EE

Work with radicals and integer exponents.

1.  Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example,  
32 × 3–5 = 3–3 = 1/33 = 1/27.

2.  Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a  
positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that 
√2 is irrational.

3.  Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small  
quantities, and to express how many times as much one is than the other. For example, estimate the population of the 
United States as 3 × 108 and the population of the world as 7 × 109, and determine that the world population is more  
than 20 times larger.

4.  Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific 
notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small 
quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by 
technology.

Understand the connections between proportional relationships, lines, and linear equations.

5.  Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional 
relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to 
determine which of two moving objects has greater speed.

6.  Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the 
coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting 
the vertical axis at b.

Analyze and solve linear equations and pairs of simultaneous linear equations.

7. Solve linear equations in one variable.

a.  Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show 
which of these possibilities is the case by successively transforming the given equation into simpler forms, until an 
equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).

b.  Solve linear equations with rational number coefficients, including equations whose solutions require expanding  
expressions using the distributive property and collecting like terms.

Grade 8
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8.  Analyze and solve pairs of simultaneous linear equations.

a.  Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of 
their graphs, because points of intersection satisfy both equations simultaneously.

b.  Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. 
Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot 
simultaneously be 5 and 6.

c.  Solve real-world and mathematical problems leading to to linear equations in two variables. For example, given  
coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through 
the second pair.

Functions 8.F

Define, evaluate, and compare functions.

1.  Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of 
ordered pairs consisting of an input and the corresponding output.1

2.  Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables,  
or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function  
represented by an algebraic expression, determine which function has the greater rate of change.

3.  Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions 
that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear 
because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Use functions to model relationships between quantities.

4.  Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value 
of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a 
graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of 
its graph or a table of values.

5.  Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is 
increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has 
been described verbally.

Geometry 8.G

Understand congruence and similarity using physical models, transparencies, or geometry software.

1.  Verify experimentally the properties of rotations, reflections, and translations:

a.  Lines are taken to lines, and line segments to line segments of the same length.

b.  Angles are taken to angles of the same measure.

c.  Parallel lines are taken to parallel lines.

1. Function notation is not required in grade 8.
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2.  Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence  
of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence 
between them.

3.  Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

4.  Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence 
of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that 
exhibits the similarity between them.

5.  Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created 
when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange 
three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in  
terms of transversals why this is so.

Understand and apply the Pythagorean Theorem.

6.  Explain a proof of the Pythagorean Theorem and its converse.

7.  Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical  
problems in two and three dimensions.

8.  Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

9.  Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical 
problems.

Statistics and Probability 8.SP

Investigate patterns of association in bivariate data.

1.  Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two 
quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear 
association.

2.  Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that 
suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the 
data points to the line.

3.  Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope 
and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an 
additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

4.  Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative  
frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables 
collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association 
between the two variables. For example, collect data from students in your class on whether or not they have a curfew on 
school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also 
tend to have chores?
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Introduction to Higher 
Mathematics Standards

The standards for higher mathematics are organized in two ways—as model courses and in conceptual categories—and include 
California additions.1 The model courses consist of three courses in the traditional pathway (Algebra I, Geometry, and Algebra II);  
three courses in the integrated pathway (Mathematics I, II, and III); and two advanced courses (Advanced Placement Probability 
and Statistics and Calculus). The model courses provide guidance for developing curriculum and instruction. The forthcoming 
Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve, will offer expanded explanations of 
the model courses and suggestions for additional courses, including Pre-Calculus and Statistics and Probability. 

The six conceptual categories are as follows:

 Number and Quantity
 Algebra
 Functions
 Modeling
 Geometry
 Statistics and Probability

Conceptual categories portray a coherent view of higher mathematics and cross traditional course boundaries. There are no 
standards listed in the conceptual category of modeling. Instead, modeling standards appear throughout the other conceptual 
categories and are indicated by a star symbol (). 

The higher mathematics standards specify the mathematics that all students should study in order to be college and career 
ready. Additional mathematics that students should learn in preparation for advanced courses, such as calculus, advanced 
statistics, or discrete mathematics, is indicated by a plus symbol (+). All standards without a (+) symbol should be in the  
common mathematics curriculum for all college and career ready students. Standards with a (+) symbol may also appear in 
courses intended for all students.

Table 1: Model Mathematics Courses, by Grade Level 

Discipline Grade Seven Grade Eight Grade Nine Grade Ten Grade Eleven Grade Twelve

Algebra I/Mathematics I

Geometry/Mathematics II

Algebra II/Mathematics III

Advanced Placement 
Probability and Statistics

Calculus

Local districts determine which course offerings and sequences best meet the needs of students. The table above provides 
guidance on possible course-taking sequences in higher mathematics. It is not intended to be an exhaustive list of courses or 
sequences of courses that students could take. In the forthcoming Mathematics Framework for California Public Schools,  
Kindergarten Through Grade Twelve, courses in Pre-Calculus and Statistics and Probability will also be presented. 

1. California additions appear in boldface type and with a CA notation.
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Algebra I

The fundamental purpose of the Algebra I course is to formalize and extend the mathematics that students learned in the 
middle grades. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, and 
Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, 
which appear in brackets, indicate what is appropriate for study in this particular course. For example, the scope of Algebra I is 
limited to linear, quadratic, and exponential expressions and functions as well as some work with absolute value, step, and  
functions that are piecewise-defined. Therefore, although a standard may include references to logarithms or trigonometry, 
those functions are not to be included in course work for Algebra I; they will be addressed later in Algebra II. 

For the Algebra I course, instructional time should focus on four critical areas: (1) deepen and extend understanding of linear 
and exponential relationships; (2) contrast linear and exponential relationships with each other and engage in methods for  
analyzing, solving, and using quadratic functions; (3) extend the laws of exponents to square and cube roots; and (4) apply 
linear models to data that exhibit a linear trend. 

(1) In previous grades, students learned to solve linear equations in one variable and applied graphical and algebraic methods 
to analyze and solve systems of linear equations in two variables. In Algebra I, students analyze and explain the process 
of solving an equation and justify the process used in solving a system of equations. Students develop fluency in writing, 
interpreting, and translating among various forms of linear equations and inequalities and use them to solve problems. They 
master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and 
solution of simple exponential equations. 

(2) In earlier grades, students define, evaluate, and compare functions and use them to model relationships between quantities.  
In Algebra I, students learn function notation and develop the concepts of domain and range. They focus on linear, quadratic,  
and exponential functions, including sequences, and also explore absolute value, step, and piecewise-defined functions; 
they interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and 
understand the limitations of various representations. Students build on and extend their understanding of integer exponents  
to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between  
additive and multiplicative change. Students explore systems of equations and inequalities, and they find and interpret their 
solutions. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.

(3) Students extend the laws of exponents to rational exponents involving square and cube roots and apply this new  
understanding of number; they strengthen their ability to see structure in and create quadratic and exponential expressions. 
They create and solve equations, inequalities, and systems of equations involving quadratic expressions. Students become 
facile with algebraic manipulation, including rearranging and collecting terms, and factoring, identifying, and canceling  
common factors in rational expressions. Students consider quadratic functions, comparing the key characteristics of 
quadratic functions to those of linear and exponential functions. They select from these functions to model phenomena. 
Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions.  
In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students 
expand their experience with functions to include more specialized functions—absolute value, step, and those that are 
piecewise-defined. 1 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 108–9. 

60 | Higher Mathematics Courses Algebra I



(4) Building upon their prior experiences with data, students explore a more formal means of assessing how a model fits data. 
Students use regression techniques to describe approximately linear relationships between quantities. They use graphical 
representations and knowledge of context to make judgments about the appropriateness of linear models. With linear  
models, they look at residuals to analyze the goodness of fit.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.
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 Algebra I Overview

Number and Quantity
The Real Number System

 Extend the properties of exponents to rational exponents.

 Use properties of rational and irrational numbers.

Quantities

 Reason quantitatively and use units to solve problems.

Algebra
Seeing Structure in Expressions

 Interpret the structure of expressions.

 Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

 Perform arithmetic operations on polynomials.

Creating Equations

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

 Understand solving equations as a process of reasoning and explain the reasoning.

 Solve equations and inequalities in one variable.

 Solve systems of equations.

 Represent and solve equations and inequalities graphically.

Functions
Interpreting Functions

 Understand the concept of a function and use function notation.

 Interpret functions that arise in applications in terms of the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two quantities.

 Build new functions from existing functions.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Linear, Quadratic, and Exponential Models

 Construct and compare linear, quadratic, and exponential models and solve problems.

 Interpret expressions for functions in terms of the situation they model.

Statistics and Probability
Interpreting Categorical and Quantitative Data 

 Summarize, represent, and interpret data on a single count or measurement variable.

 Summarize, represent, and interpret data on two categorical and quantitative variables.

 Interpret linear models.
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Algebra IA1

Number and Quantity

The Real Number System N-RN

Extend the properties of exponents to rational exponents.

1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents 
to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the 
cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.

2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. 

Use properties of rational and irrational numbers.

3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational  
number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Quantities N-Q

Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]

1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units 
consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.  

2. Define appropriate quantities for the purpose of descriptive modeling. 

3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Algebra

Seeing Structure in Expressions A-SSE

Interpret the structure of expressions. [Linear, exponential, and quadratic] 

1. Interpret expressions that represent a quantity in terms of its context.  

a. Interpret parts of an expression, such as terms, factors, and coefficients.  

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret  
P(1 + r)n as the product of P and a factor not depending on P. 

2. Use the structure of an expression to identify ways to rewrite it. 

Write expressions in equivalent forms to solve problems. [Quadratic and exponential]

3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by  
the expression. 

a. Factor a quadratic expression to reveal the zeros of the function it defines. 

b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.1 

Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare 
tudents for advanced courses.
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c. Use the properties of exponents to transform expressions for exponential functions. For example, the expression  
1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual 
rate is 15%.

Arithmetic with Polynomials and Rational Expressions A-APR

Perform arithmetic operations on polynomials. [Linear and quadratic]

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of  
addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Creating Equations A-CED

Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only);  
for A.CED.3 linear only]

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA 

2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales. 

3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions 
as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost 
constraints on combinations of different foods. 

4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example,  
rearrange Ohm’s law V = IR to highlight resistance R. 

Reasoning with Equations and Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning.  
[Master linear; learn as general principle.]

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, start- 
ing from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Solve equations and inequalities in one variable. [Linear inequalities; literal equations that are linear in the variables being 
solved for; quadratics with real solutions]

3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

3.1  Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in 
context. CA

4. Solve quadratic equations in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form  
(x – p)2 = q that has the same solutions. Derive the quadratic formula from this form.

b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic 
formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives 
complex solutions and write them as a ± bi for real numbers a and b. 
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Solve systems of equations. [Linear-linear and linear-quadratic]

5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a 
multiple of the other produces a system with the same solutions. 

6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two 
variables.

7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. 

Represent and solve equations and inequalities graphically. [Linear and exponential; learn as general principle.] 

10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often 
forming a curve (which could be a line).

11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions  
of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of 
values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute 
value, exponential, and logarithmic functions.  

12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict 
inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the  
corresponding half-planes.

Functions

Interpreting Functions F-IF

Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and  
exponential and on arithmetic and geometric sequences.]

1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element 
of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the 
output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). 

2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation  
in terms of a context. 

3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.  
For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1. 

Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity. 

5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example,  
if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers 
would be an appropriate domain for the function. 

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph. 
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Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined] 

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases. 

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.  

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions,  
showing period, midline, and amplitude. 

8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the 
function. 

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and  
symmetry of the graph, and interpret these in terms of a context. 

b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of 
change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, and y = (1.2)t/10, and classify them as representing 
exponential growth or decay. 

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or 
by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say 
which has the larger maximum.

Building Functions F-BF

Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear, exponential, and quadratic]

1. Write a function that describes a relationship between two quantities. 

a. Determine an explicit expression, a recursive process, or steps for calculation from a context.  

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature  
of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.  

2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and 
translate between the two forms.  

Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. 

Linear, Quadratic, and Exponential Models F-LE

Construct and compare linear, quadratic, and exponential models and solve problems. 

1. Distinguish between situations that can be modeled with linear functions and with exponential functions. 
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a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal 
factors over equal intervals. 

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. 

2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a 
relationship, or two input-output pairs (include reading these from a table). 

3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, 
quadratically, or (more generally) as a polynomial function. 

Interpret expressions for functions in terms of the situation they model. 

5. Interpret the parameters in a linear or exponential function in terms of a context.  [Linear and exponential of form  
f(x) = bx + k]

6.  Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA 

Statistics and Probability

Interpreting Categorical and Quantitative Data  S-ID

Summarize, represent, and interpret data on a single count or measurement variable. 

1. Represent data with plots on the real number line (dot plots, histograms, and box plots). 

2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile 
range, standard deviation) of two or more different data sets. 

3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme 
data points (outliers). 

Summarize, represent, and interpret data on two categorical and quantitative variables.  
[Linear focus; discuss general principle.]

5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of 
the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the 
data. 

6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. 

a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions 
or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. 

b. Informally assess the fit of a function by plotting and analyzing residuals.  

c. Fit a linear function for a scatter plot that suggests a linear association.  

Interpret linear models. 

7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 

8. Compute (using technology) and interpret the correlation coefficient of a linear fit.  

9. Distinguish between correlation and causation.  
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Geometry

The fundamental purpose of the Geometry course is to formalize and extend students’ geometric experiences from the middle 
grades. This course includes standards from the conceptual categories of Geometry and Statistics and Probability. Some  
standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets,  
indicate what is appropriate for study in this particular course.

In this Geometry course, students explore more complex geometric situations and deepen their explanations of geometric  
relationships, presenting and hearing formal mathematical arguments. Important differences exist between this course and  
the historical approach taken in geometry classes. For example, transformations are emphasized in this course. 

For the Geometry course, instructional time should focus on six critical areas: (1) establish criteria for congruence of triangles 
based on rigid motions; (2) establish criteria for similarity of triangles based on dilations and proportional reasoning;  
(3) informally develop explanations of circumference, area, and volume formulas; (4) apply the Pythagorean Theorem to the 
coordinate plan; (5) prove basic geometric theorems; and (6) extend work with probability.

(1) Students have prior experience with drawing triangles based on given measurements and performing rigid motions including  
translations, reflections, and rotations. They have used these to develop notions about what it means for two objects to be 
congruent. In this course, students establish triangle congruence criteria, based on analyses of rigid motions and formal 
constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove 
theorems—using a variety of formats including deductive and inductive reasoning and proof by contradiction—and solve  
problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions  
and explain why they work.

(2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity.  
They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to 
understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. 
Students derive the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, 
building on their work with quadratic equations done in Algebra I. They are able to distinguish whether three given measures 
(angles or sides) define 0, 1, 2, or infinitely many triangles.

(3) Students’ experience with three-dimensional objects is extended to include informal explanations of circumference, area, 
and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of 
cross-sections and the result of rotating a two-dimensional object about a line. 

(4) Building on their work with the Pythagorean Theorem to find distances, students use the rectangular coordinate system  
to verify geometric relationships, including properties of special triangles and quadrilaterals, and slopes of parallel and  
perpendicular lines, which relates back to work done in the Algebra I course. Students continue their study of quadratics  
by connecting the geometric and algebraic definitions of the parabola. 1 

(5) Students prove basic theorems about circles, with particular attention to perpendicularity and inscribed angles, in order to 
see symmetry in circles and as an application of triangle congruence criteria. They study relationships among segments on 
chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance 
formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 116–17. 
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circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations—which relates 
back to work done in the Algebra I course—to determine intersections between lines and circles or parabolas and between 
two circles.

(6) Building on probability concepts that began in the middle grades, students use the language of set theory to expand their 
ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually 
exclusive events, independent events, and conditional probability. Students should make use of geometric probability  
models wherever possible. They use probability to make informed decisions. 

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.
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 Geometry Overview

Geometry
Congruence

 Experiment with transformations in the plane.

 Understand congruence in terms of rigid motions.

 Prove geometric theorems.

 Make geometric constructions.

Similarity, Right Triangles, and Trigonometry

 Understand similarity in terms of similarity transformations.

 Prove theorems involving similarity.

 Define trigonometric ratios and solve problems involving  
right triangles.

 Apply trigonometry to general triangles. 

Circles

 Understand and apply theorems about circles.

 Find arc lengths and area of sectors of circles.

Expressing Geometric Properties with Equations

 Translate between the geometric description and the equation for a conic section.

 Use coordinates to prove simple geometric theorems algebraically.

Geometric Measurement and Dimension

 Explain volume formulas and use them to solve problems.

 Visualize relationships between two-dimensional and three-dimensional objects.

Modeling with Geometry 

 Apply geometric concepts in modeling situations.

Statistics and Probability
Conditional Probability and the Rules of Probability

 Understand independence and conditional probability and use them to interpret data.

 Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Using Probability to Make Decisions

 Use probability to evaluate outcomes of decisions.

Mathematical Practices

1.  Make sense of problems and persevere in  
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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GeometryG

Geometry

Congruence  G-CO

Experiment with transformations in the plane.

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions 
of point, line, distance along a line, and distance around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as 
functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve 
distance and angle to those that do not (e.g., translation versus horizontal stretch).

3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, 
and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper,  
tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept 
of geometric proof.]

6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given 
figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. 

7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if correspond-
ing pairs of sides and corresponding pairs of angles are congruent. 

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of 
rigid motions. 

Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel  
lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of 
a line segment are exactly those equidistant from the segment’s endpoints. 

10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of 
isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and 
half the length; the medians of a triangle meet at a point. 

11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the 
diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions. [Formalize and explain processes.]

12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective 
devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment;  
bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and  
constructing a line parallel to a given line through a point not on the line. 

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. 



Geometry G

Similarity, Right Triangles, and Trigonometry G-SRT

Understand similarity in terms of similarity transformations.

1. Verify experimentally the properties of dilations given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through 
the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 

2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain 
using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles 
and the proportionality of all corresponding pairs of sides. 

3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar. 

Prove theorems involving similarity.

4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportion-
ally, and conversely; the Pythagorean Theorem proved using triangle similarity.

5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles.

6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions 
of trigonometric ratios for acute angles. 

7. Explain and use the relationship between the sine and cosine of complementary angles. 

8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. 

8.1  Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA

Apply trigonometry to general triangles.

9.  (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular  
to the opposite side.

10.  (+) Prove the Laws of Sines and Cosines and use them to solve problems.

11.  (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right 
triangles (e.g., surveying problems, resultant forces).

Circles G-C

Understand and apply theorems about circles.

1. Prove that all circles are similar.

2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, 
inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular 
to the tangent where the radius intersects the circle. 1

Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare 
students for advanced courses.
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G Geometry

3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed 
in a circle.

4. (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure]

5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the 
radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between 
degrees and radians. CA 

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section.

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the 
center and radius of a circle given by an equation.

2. Derive the equation of a parabola given a focus and directrix.

Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]

4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by 
four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered  
at the origin and containing the point (0, 2).

5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the  
equation of a line parallel or perpendicular to a given line that passes through a given point). 

6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio. 

7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. 

Geometric Measurement and Dimension G-GMD

Explain volume formulas and use them to solve problems.

1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, 
and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. 

Visualize relationships between two-dimensional and three-dimensional objects.

4. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects 
generated by rotations of two-dimensional objects.

5.  Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k2, and k3, 
respectively; determine length, area and volume measures using scale factors. CA

6. Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, 
and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-
world and mathematical problems. CA
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Geometry G

Modeling with Geometry G-MG

Apply geometric concepts in modeling situations.

1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human 
torso as a cylinder). 

2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic 
foot). 

3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or 
minimize cost; working with typographic grid systems based on ratios). 

Statistics and Probability

Conditional Probability and the Rules of Probability S-CP

Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or 
experiments.]

1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, 
or as unions, intersections, or complements of other events (“or,” “and,” “not”). 

2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their 
probabilities, and use this characterization to determine if they are independent. 

3. Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying 
that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A 
is the same as the probability of B.  

4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being  
classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional 
probabilities. For example, collect data from a random sample of students in your school on their favorite subject among 
math, science, and English. Estimate the probability that a randomly selected student from your school will favor science 
given that the student is in tenth grade. Do the same for other subjects and compare the results. 

5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday  
situations.  

Use the rules of probability to compute probabilities of compound events in a uniform probability model. 

6. Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer 
in terms of the model. 

7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. 

8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and  
interpret the answer in terms of the model. 

9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems. 
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G Geometry

Using Probability to Make Decisions S-MD

Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).  

7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey 
goalie at the end of a game). 
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Algebra II

Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include 
logarithmic, polynomial, rational, and radical functions in the Algebra II course. This course includes standards from the  
conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. Some standards 
are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is 
appropriate for study in this particular course. Standards that were limited in Algebra I no longer have those restrictions in  
Algebra II. Students work closely with the expressions that define the functions, competently manipulate algebraic expressions, 
and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic  
equations over the set of complex numbers and solving exponential equations using the properties of logarithms. 

For the Algebra II course, instructional time should focus on four critical areas: (1) relate arithmetic of rational expressions  
to arithmetic of rational numbers; (2) expand understandings of functions and graphing to include trigonometric functions;  
(3) synthesize and generalize functions and extend understanding of exponential functions to logarithmic functions; and  
(4) relate data display and summary statistics to probability and explore a variety of data collection methods.

(1) A central theme of this Algebra II course is that the arithmetic of rational expressions is governed by the same rules as 
the arithmetic of rational numbers. Students explore the structural similarities between the system of polynomials and the 
system of integers. They draw on analogies between polynomial arithmetic and base-ten computation, focusing on proper-
ties of operations, particularly the distributive property. Connections are made between multiplication of polynomials with 
multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of 
polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and 
solutions of polynomial equations. The Fundamental Theorem of Algebra is examined. 

(2) Building on their previous work with functions and on their work with trigonometric ratios and circles in the Geometry 
course, students now use the coordinate plane to extend trigonometry to model periodic phenomena. 

(3) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with 
exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations 
on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that 
transformations on a graph always have the same effect regardless of the type of the underlying function. They identify  
appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare 
models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The 
description of modeling as “the process of choosing and using mathematics and statistics to analyze empirical situations, 
to understand them better, and to make decisions” is at the heart of this Algebra II course. The narrative discussion and 
diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a 
modeling context.

(4) Students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data 
and to probability distributions. They identify different ways of collecting data—including sample surveys, experiments, and 
simulations—and consider how randomness and careful design affect the conclusions that can be drawn.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.1 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 123.
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 Algebra II  Overview

Number and Quantity
The Complex Number System

 Perform arithmetic operations with complex numbers.

 Use complex numbers in polynomial identities and equations.

Algebra
Seeing Structure in Expressions

 Interpret the structure of expressions.

 Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

 Perform arithmetic operations on polynomials.

 Understand the relationship between zeros and factors of  
polynomials.

 Use polynomial identities to solve problems. 

 Rewrite rational expressions.

Creating Equations

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities 

 Understand solving equations as a process of reasoning and explain the reasoning.

 Solve equations and inequalities in one variable.

 Represent and solve equations and inequalities graphically.

Functions
Interpreting Functions

 Interpret functions that arise in applications in terms of the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two quantities.

 Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

 Construct and compare linear, quadratic, and exponential models and solve problems.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Trigonometric Functions

 Extend the domain of trigonometric functions using the unit circle.

 Model periodic phenomena with trigonometric functions.

 Prove and apply trigonometric identities.

Geometry
Expressing Geometric Properties with Equations

 Translate between the geometric description and the equation for a conic section.

Statistics and Probability
Interpreting Categorical and Quantitative Data

 Summarize, represent, and interpret data on a single count or measurement variable.

Making Inferences and Justifying Conclusions

 Understand and evaluate random processes underlying statistical experiments.

 Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

Using Probability to Make Decisions

 Use probability to evaluate outcomes of decisions.
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A2 Algebra II

Number and Quantity

The Complex Number System N-CN

Perform arithmetic operations with complex numbers.

1. Know there is a complex number i such that i2 = −1, and every complex number has the form a + bi with a and b real. 

2. Use the relation i2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply  
complex numbers.

Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients]

7. Solve quadratic equations with real coefficients that have complex solutions. 

8. (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x + 2i)(x – 2i).

9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Algebra 

Seeing Structure in Expressions A-SSE

Interpret the structure of expressions. [Polynomial and rational]

1. Interpret expressions that represent a quantity in terms of its context. 

a. Interpret parts of an expression, such as terms, factors, and coefficients. 

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret  
P(1 + r)n as the product of P and a factor not depending on P. 

2. Use the structure of an expression to identify ways to rewrite it. 

Write expressions in equivalent forms to solve problems.

4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve 
problems. For example, calculate mortgage payments. 

Arithmetic with Polynomials and Rational Expressions A-APR

Perform arithmetic operations on polynomials. [Beyond quadratic]

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of  
addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 

Understand the relationship between zeros and factors of polynomials.

2. Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), 
so p(a) = 0 if and only if (x – a) is a factor of p(x).

3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of  
the function defined by the polynomial. 1 

Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare 
students for advanced courses.
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A2Algebra II

Use polynomial identities to solve problems.

4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity 
(x2 + y2)2= (x2 – y2)2 + (2xy)2 can be used to generate Pythagorean triples.

5. (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n, where  
x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.12

Rewrite rational expressions. [Linear and quadratic denominators]

6. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), 
and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more 
complicated examples, a computer algebra system. 

7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtrac-
tion, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. 

Creating Equations A-CED

Create equations that describe numbers or relationships. [Equations using all available types of expressions, including simple 
root functions]

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA 

2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales. 

3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions 
as viable or non-viable options in a modeling context. 

4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. 

Reasoning with Equations and Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]

2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. 

Solve equations and inequalities in one variable. 

3.1  Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in 
context. CA

Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and  
exponential functions.]

11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions  
of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of 
values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute 
value, exponential, and logarithmic functions. 

1. The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
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Functions

Interpreting Functions F-IF

Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity. 

5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. 

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph. 

Analyze functions using different representations. [Focus on using key features to guide selection of appropriate type of model 
function.]

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases. 

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing  
period, midline, and amplitude. 

8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the 
function.

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or 
by verbal descriptions). 

Building Functions F-BF

Build a function that models a relationship between two quantities. [Include all types of functions studied.]

1. Write a function that describes a relationship between two quantities.

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature  
of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 

Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common 
effect of each transformation across function types.]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. 
For example, f(x) =2x3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
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Linear, Quadratic, and Exponential Models F-LE

Construct and compare linear, quadratic, and exponential models and solve problems. 

4. For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 
10, or e; evaluate the logarithm using technology.  [Logarithms as solutions for exponentials]

4.1 Prove simple laws of logarithms. CA 

4.2 Use the definition of logarithms to translate between logarithms in any base. CA 

4.3 Understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their  
approximate values. CA 

Trigonometric Functions F-TF

Extend the domain of trigonometric functions using the unit circle.

1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, 
interpreted as radian measures of angles traversed counterclockwise around the unit circle.

2.1 Graph all 6 basic trigonometric functions. CA

Model periodic phenomena with trigonometric functions.

5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. 

Prove and apply trigonometric identities.

8.  Prove the Pythagorean identity sin2(θ ) + cos2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), 
or tan(θ ) and the quadrant of the angle.

Geometry

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section.

3.1 Given a quadratic equation of the form ax2 + by2 + cx + dy + e = 0, use the method for completing the square to put the 
equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and 
graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA

Statistics and Probability

Interpreting Categorical and Quantitative Data S-ID

Summarize, represent, and interpret data on a single count or measurement variable. 

4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. 
Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables 
to estimate areas under the normal curve. 
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Making Inferences and Justifying Conclusions S-IC

Understand and evaluate random processes underlying statistical experiments. 

1. Understand statistics as a process for making inferences about population parameters based on a random sample from 
that population. 

2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For 
example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to 
question the model? 

Make inferences and justify conclusions from sample surveys, experiments, and observational studies. 

3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how 
randomization relates to each. 

4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of 
simulation models for random sampling. 

5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between 
parameters are significant. 

6. Evaluate reports based on data. 

Using Probability to Make Decisions S-MD

Use probability to evaluate outcomes of decisions. [Include more complex situations.]

6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). 

7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey 
goalie at the end of a game). 
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Mathematics I

The fundamental purpose of the Mathematics I course is to formalize and extend the mathematics that students learned in the 
middle grades. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions,  
Geometry, and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore 
instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. For example, the 
scope of Mathematics I is limited to linear and exponential expressions and functions as well as some work with absolute  
value, step, and functions that are piecewise-defined. Therefore, although a standard may include references to quadratic,  
logarithmic, or trigonometric functions, those functions should not be included in course work for Mathematics I; they will be 
addressed in Mathematics II or III.

For the Mathematics I course, instructional time should focus on six critical areas: (1) extend understanding of numerical  
manipulation to algebraic manipulation; (2) synthesize understanding of function; (3) deepen and extend understanding of  
linear relationships; (4) apply linear models to data that exhibit a linear trend; (5) establish criteria for congruence based on 
rigid motions; and (6) apply the Pythagorean Theorem to the coordinate plane. 

(1) In previous grades, students had a variety of experiences working with expressions and creating equations. Students become  
competent in algebraic manipulation in much the same way that they are with numerical manipulation. Algebraic facility 
includes rearranging and collecting terms, factoring, identifying and canceling common factors in rational expressions, and 
applying properties of exponents. Students continue this work by using quantities to model and analyze situations, to  
interpret expressions, and to create equations to describe situations. 

(2) In earlier grades, students define, evaluate, and compare functions, and use them to model relationships among quantities. 
Students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions 
as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many 
examples of functions, including sequences; interpret functions given graphically, numerically, symbolically, and verbally; 
translate between representations; and understand the limitations of various representations. They work with functions 
given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be  
approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as 
those that cannot. When functions describe relationships between quantities arising from a context, students reason with 
the units in which those quantities are measured. Students build on and informally extend their understanding of integer 
exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing  
between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric  
sequences as exponential functions.

(3) In previous grades, students learned to solve linear equations in one variable and applied graphical and algebraic methods 
to analyze and solve systems of linear equations in two variables. Building on these earlier experiences, students analyze 
and explain the process of solving an equation and justify the process used in solving a system of equations. Students  
develop fluency in writing, interpreting, and translating among various forms of linear equations and inequalities and use 
them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws 
of exponents to the creation and solution of simple exponential equations. Students explore systems of equations and 
inequalities, and they find and interpret their solutions. All of this work is grounded on understanding quantities and on 
relationships among them. 1 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 129–130.
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(4) Students’ prior experiences with data are the basis for the more formal means of assessing how a model fits data. Students 
use regression techniques to describe approximately linear relationships among quantities. They use graphical representa-
tions and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they 
look at residuals to analyze the goodness of fit. 

(5) In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience 
with rigid motions (translations, reflections, and rotations) and have used these experiences to develop notions about what 
it means for two objects to be congruent. Students establish triangle congruence criteria, based on analyses of rigid motions  
and formal constructions. They solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to 
complete geometric constructions and explain why they work.

(6) Building on their work with the Pythagorean Theorem in eighth grade to find distances, students use a rectangular coordinate  
system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel 
and perpendicular lines.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.

Mathematics I Higher Mathematics Courses | 87



 Mathematics I Overview

Number and Quantity
Quantities

 Reason quantitatively and use units to solve problems.

Algebra
Seeing Structure in Expressions

 Interpret the structure of expressions.

Creating Equations 

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

 Understand solving equations as a process of reasoning  
and explain the reasoning.

 Solve equations and inequalities in one variable.

 Solve systems of equations.

 Represent and solve equations and inequalities graphically.

Functions
Interpreting Functions

 Understand the concept of a function and use function notation.

 Interpret functions that arise in applications in terms of the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two quantities.

 Build new functions from existing functions.

Linear, Quadratic, and Exponential Models 

 Construct and compare linear, quadratic, and exponential models and solve problems.

 Interpret expressions for functions in terms of the situation they model.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Geometry
Congruence

 Experiment with transformations in the plane.

 Understand congruence in terms of rigid motions.

 Make geometric constructions.

Expressing Geometric Properties with Equations

 Use coordinates to prove simple geometric theorems algebraically.

Statistics and Probability
Interpreting Categorical and Quantitative Data

 Summarize, represent, and interpret data on a single count or measurement variable.

 Summarize, represent, and interpret data on two categorical and quantitative variables.

 Interpret linear models.
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Number and Quantity

Quantities N-Q

Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]

1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units 
consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.  

2. Define appropriate quantities for the purpose of descriptive modeling. 

3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. 

Algebra

Seeing Structure in Expressions A-SSE

Interpret the structure of expressions. [Linear expressions and exponential expressions with integer exponents]

1. Interpret expressions that represent a quantity in terms of its context.  

a. Interpret parts of an expression, such as terms, factors, and coefficients.  

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret  
P(1 + r)n as the product of P and a factor not depending on P.  

Creating Equations A-CED

Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA  

2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales. 

3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions 
as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost 
constraints on combinations of different foods. 

4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example,  
rearrange Ohm’s law V = IR to highlight resistance R. 12

Reasoning with Equations and Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning. [Master linear; learn as general 
principle.]

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, start-
ing from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. 

Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.(+) Indicates additional mathematics to prepare 
students for advanced courses.
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Solve equations and inequalities in one variable.

3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. [Linear 
inequalities; literal equations that are linear in the variables being solved for; exponential of a form, such as 2x = 1/16.]

3.1  Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in 
context. CA

Solve systems of equations. [Linear systems]

5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a 
multiple of the other produces a system with the same solutions. 

6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two 
variables.

Represent and solve equations and inequalities graphically. [Linear and exponential; learn as general principle.]

10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often 
forming a curve (which could be a line). 

11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the  
solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make 
tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, 
absolute value, exponential, and logarithmic functions. 

12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict 
inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the  
corresponding half-planes. 

Functions

Interpreting Functions F-IF

Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponen-
tial (integer domains) and on arithmetic and geometric sequences.]

1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element 
of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the 
output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). 

2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in 
terms of a context. 

3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.  
For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.

Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity. 
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5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example,  
if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers 
would be an appropriate domain for the function.  

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph.  

Analyze functions using different representations. [Linear and exponential]

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases.  

a. Graph linear and quadratic functions and show intercepts, maxima, and minima. 

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing  
period, midline, and amplitude. 

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or 
by verbal descriptions). 

Building Functions F-BF

Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]

1. Write a function that describes a relationship between two quantities.  

a. Determine an explicit expression, a recursive process, or steps for calculation from a context.  

b. Combine standard function types using arithmetic operations. For example, build a function that models the  
temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions  
to the model.  

2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and 
translate between the two forms.  

Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Linear, Quadratic, and Exponential Models F-LE

Construct and compare linear, quadratic, and exponential models and solve problems. [Linear and exponential]

1. Distinguish between situations that can be modeled with linear functions and with exponential functions.  

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal 
factors over equal intervals. 

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.  
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2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a 
relationship, or two input-output pairs (include reading these from a table). 

3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, 
quadratically, or (more generally) as a polynomial function. 

Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = bx + k]

5. Interpret the parameters in a linear or exponential function in terms of a context. 

Geometry

Congruence G-CO

Experiment with transformations in the plane.

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions 
of point, line, distance along a line, and distance around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as 
functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve 
distance and angle to those that do not (e.g., translation versus horizontal stretch).

3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto 
itself.

4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, 
and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper,  
tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of  
concept of geometric proof.]

6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given 
figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. 

7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if correspond-
ing pairs of sides and corresponding pairs of angles are congruent.

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of 
rigid motions. 

Make geometric constructions. [Formalize and explain processes.]

12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective 
devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment;  
bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and construct-
ing a line parallel to a given line through a point not on the line.

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. 
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Geometry

Expressing Geometric Properties with Equations G-GPE

Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]

4. Use coordinates to prove simple geometric theorems algebraically. 

5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation  
of a line parallel or perpendicular to a given line that passes through a given point). 

7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.  

Statistics and Probability

Interpreting Categorical and Quantitative Data S-ID

Summarize, represent, and interpret data on a single count or measurement variable.

1. Represent data with plots on the real number line (dot plots, histograms, and box plots). 

2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile 
range, standard deviation) of two or more different data sets. 

3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme 
data points (outliers). 

Summarize, represent, and interpret data on two categorical and quantitative variables. [Linear focus; discuss  
general principle.]

5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context  
of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in 
the data. 

6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. 

a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions 
or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.  

b. Informally assess the fit of a function by plotting and analyzing residuals. 

c. Fit a linear function for a scatter plot that suggests a linear association.  

Interpret linear models. 

7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 

8. Compute (using technology) and interpret the correlation coefficient of a linear fit. 

9. Distinguish between correlation and causation. 
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The focus of the Mathematics II course is on quadratic expressions, equations, and functions; comparing their characteristics 
and behavior to those of linear and exponential relationships from Mathematics I. This course includes standards from the 
conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. Some standards 
are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is 
appropriate for study in this particular course. For example, the scope of Mathematics II is limited to quadratic expressions and 
functions, and some work with absolute value, step, and functions that are piecewise-defined. Therefore, although a standard 
may include references to logarithms or trigonometry, those functions should not be included in course work for Mathematics II; 
they will be addressed in Mathematics III.

For the Mathematics II course, instructional time should focus on five critical areas: (1) extend the laws of exponents to rational 
exponents; (2) compare key characteristics of quadratic functions with those of linear and exponential functions; (3) create and 
solve equations and inequalities involving linear, exponential, and quadratic expressions; (4) extend work with probability; and 
(5) establish criteria for similarity of triangles based on dilations and proportional reasoning.

 (1) Students extend the laws of exponents to rational exponents and explore distinctions between rational and irrational  
numbers by considering their decimal representations. Students learn that when quadratic equations do not have real  
solutions, the number system must be extended so that solutions exist, analogous to the way in which extending the whole 
numbers to the negative numbers allows x + 1 = 0 to have a solution. Students explore relationships between number 
systems: whole numbers, integers, rational numbers, real numbers, and complex numbers. The guiding principle is that 
equations with no solutions in one number system may have solutions in a larger number system.

(2) Students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and 
exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph 
of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions 
of a quadratic equation as the zeros of a related quadratic function. When quadratic equations do not have real solutions, 
students learn that that the graph of the related quadratic function does not cross the horizontal axis. They expand their 
experience with functions to include more specialized functions—absolute value, step, and those that are piecewise-defined.

(3) Students begin by focusing on the structure of expressions, rewriting expressions to clarify and reveal aspects of the  
relationship they represent. They create and solve equations, inequalities, and systems of equations involving exponential 
and quadratic expressions. 

(4) Building on probability concepts that began in the middle grades, students use the language of set theory to expand their 
ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually  
exclusive events, independent events, and conditional probability. Students should make use of geometric probability  
models wherever possible. They use probability to make informed decisions. 

(5) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity.  
They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to 
understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. 
Students develop facility with geometric proof. They use what they know about congruence and similarity to prove theorems 
involving lines, angles, triangles, and other polygons. They explore a variety of formats for writing proofs.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.1 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 137–8.
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 Mathematics II Overview

Number and Quantity
The Real Number System

 Extend the properties of exponents to rational exponents.

 Use properties of rational and irrational numbers.

The Complex Number Systems

 Perform arithmetic operations with complex numbers.

 Use complex numbers in polynomial identities and equations.

Algebra
Seeing Structure in Expressions

 Interpret the structure of expressions.

 Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

 Perform arithmetic operations on polynomials.

Creating Equations

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

 Solve equations and inequalities in one variable.

 Solve systems of equations.

Functions
Interpreting Functions

 Interpret functions that arise in applications in terms of the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two quantities.

 Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

 Construct and compare linear, quadratic, and exponential models and solve problems.

 Interpret expressions for functions in terms of the situation they model.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Trigonometric Functions

 Prove and apply trigonometric identities.

Geometry
Congruence

 Prove geometric theorems.

Similarity, Right Triangles, and Trigonometry

 Understand similarity in terms of similarity transformations.

 Prove theorems involving similarity.

 Define trigonometric ratios and solve problems involving right triangles.

Circles

 Understand and apply theorems about circles.

 Find arc lengths and areas of sectors of circles.

Expressing Geometric Properties with Equations

 Translate between the geometric description and the equation for a conic section.

 Use coordinates to prove simple geometric theorems algebraically.

Geometric Measurement and Dimension

 Explain volume formulas and use them to solve problems.

Statistics and Probability
Conditional Probability and the Rules of Probability

 Understand independence and conditional probability and use them to interpret data.

 Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Using Probability to Make Decisions

 Use probability to evaluate outcomes of decisions.
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Number and Quantity

The Real Number System N-RN

Extend the properties of exponents to rational exponents.

1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents 
to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the 
cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.

2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. 

Use properties of rational and irrational numbers.

3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational  
number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

The Complex Number System N-CN

Perform arithmetic operations with complex numbers. [i2 as highest power of i]

1. Know there is a complex number i such that i2 = –1, and every complex number has the form a + bi with a and b real. 

2. Use the relation i2 = –1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex 
numbers. 

Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]

7. Solve quadratic equations with real coefficients that have complex solutions. 

8. (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x + 2i)(x – 2i). 

9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials. 

Algebra

Seeing Structure in Expressions A-SSE

Interpret the structure of expressions. [Quadratic and exponential]

1. Interpret expressions that represent a quantity in terms of its context. 

a. Interpret parts of an expression, such as terms, factors, and coefficients. 

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret  
P(1 + r)n as the product of P and a factor not depending on P.  

2. Use the structure of an expression to identify ways to rewrite it. For example, see x4 – y4 as (x2)2 – (y2)2, thus recognizing it 
as a difference of squares that can be factored as (x2 – y2)(x2 + y2). 

1 
Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare 
students for advanced courses.
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Write expressions in equivalent forms to solve problems. [Quadratic and exponential]

3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the 
expression.  

a. Factor a quadratic expression to reveal the zeros of the function it defines. 

b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.  

c. Use the properties of exponents to transform expressions for exponential functions. For example, the expression  
1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the  
annual rate is 15%. 

Arithmetic with Polynomials and Rational Expressions A-APR

Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of  
addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Creating Equations A-CED

Create equations that describe numbers or relationships. 

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA  

2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales. 

4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.  [Include formulas 
involving quadratic terms.]

Reasoning with Equations and Inequalities A-REI

Solve equations and inequalities in one variable. [Quadratics with real coefficients]

4. Solve quadratic equations in one variable. 

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form  
(x – p)2 = q that has the same solutions. Derive the quadratic formula from this form. 

b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic 
formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives 
complex solutions and write them as a ± bi for real numbers a and b. 

Solve systems of equations. [Linear-quadratic systems]

7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.  
For example, find the points of intersection between the line y = –3x and the circle x2 + y2 = 3.
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Functions

Interpreting Functions F-IF

Interpret functions that arise in applications in terms of the context. [Quadratic]

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity.  

5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. 

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph.  

Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases. 

a. Graph linear and quadratic functions and show intercepts, maxima, and minima. 

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 

8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the 
function.

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and  
symmetry of the graph, and interpret these in terms of a context. 

b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of 
change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, and y = (1.2)t/10, and classify them as representing 
exponential growth or decay.

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or 
by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say 
which has the larger maximum. 

Building Functions F-BF

Build a function that models a relationship between two quantities. [Quadratic and exponential]

1. Write a function that describes a relationship between two quantities. 

a. Determine an explicit expression, a recursive process, or steps for calculation from a context.  

b. Combine standard function types using arithmetic operations. 

Build new functions from existing functions. [Quadratic, absolute value] 

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
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4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. 
For example, f(x) =2x3.

Linear, Quadratic, and Exponential Models F-LE

Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]

3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, 
quadratically, or (more generally) as a polynomial function. 

Interpret expressions for functions in terms of the situation they model.

6.  Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA  

Trigonometric Functions F-TF

Prove and apply trigonometric identities.

8.  Prove the Pythagorean identity sin2(θ ) + cos2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), 
or tan(θ ) and the quadrant of the angle.

Geometry

Congruence G-CO

Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses  
parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular 
bisector of a line segment are exactly those equidistant from the segment’s endpoints.

10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of 
isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and 
half the length; the medians of a triangle meet at a point. 

11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the 
diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Similarity, Right Triangles, and Trigonometry G-SRT

Understand similarity in terms of similarity transformations.

1. Verify experimentally the properties of dilations given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through 
the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 
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2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain 
using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles 
and the proportionality of all corresponding pairs of sides. 

3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar. 

Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]

4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally,  
and conversely; the Pythagorean Theorem proved using triangle similarity. 

5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. 

Define trigonometric ratios and solve problems involving right triangles.

6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions 
of trigonometric ratios for acute angles. 

7. Explain and use the relationship between the sine and cosine of complementary angles. 

8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. 

8.1  Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA

Circles G-C

Understand and apply theorems about circles.

1. Prove that all circles are similar.

2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, 
inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular 
to the tangent where the radius intersects the circle. 

3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed 
in a circle.

4. (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure] 

5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the 
radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between 
degrees and radians. CA

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section.

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the 
center and radius of a circle given by an equation.

2. Derive the equation of a parabola given a focus and directrix.
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Use coordinates to prove simple geometric theorems algebraically.

4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by 
four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at 
the origin and containing the point (0, 2). [Include simple circle theorems.]

6.  Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

Geometric Measurement and Dimension G-GMD

Explain volume formulas and use them to solve problems.

1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, 
and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. 

5.  Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k2, and k3, 
respectively; determine length, area and volume measures using scale factors. CA 

6. Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, 
and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve  
real-world and mathematical problems. CA

Statistics and Probability

Conditional Probability and the Rules of Probability S-CP

Understand independence and conditional probability and use them to interpret data. [Link to data from simulations  
or experiments.]

1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, 
or as unions, intersections, or complements of other events (“or,” “and,” “not”). 

2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their 
probabilities, and use this characterization to determine if they are independent.  

3. Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying 
that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A 
is the same as the probability of B.  

4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being  
classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional 
probabilities. For example, collect data from a random sample of students in your school on their favorite subject among 
math, science, and English. Estimate the probability that a randomly selected student from your school will favor science 
given that the student is in tenth grade. Do the same for other subjects and compare the results.  

5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday  
situations.  
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Use the rules of probability to compute probabilities of compound events in a uniform probability model. 

6. Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer 
in terms of the model. 

7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. 

8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and  
interpret the answer in terms of the model. 

9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems. 

Using Probability to Make Decisions S-MD

Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). 

7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey 
goalie at the end of a game). 	
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It is in the Mathematics III course that students integrate and apply the mathematics they have learned from their earlier 
courses. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, Geometry, 
and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional 
notes, which appear in brackets, indicate what is appropriate for study in this particular course. Standards that were limited in 
Mathematics I and Mathematics II no longer have those restrictions in Mathematics III. 

For the Mathematics III course, instructional time should focus on four critical areas: (1) apply methods from probability and 
statistics to draw inferences and conclusions from data; (2) expand understanding of functions to include polynomial, rational, 
and radical functions; (3) expand right triangle trigonometry to include general triangles; and (4) consolidate functions and 
geometry to create models and solve contextual problems. 

(1) Students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data 
and to probability distributions. They identify different ways of collecting data—including sample surveys, experiments, and 
simulations—and the roles that randomness and careful design play in the conclusions that can be drawn.

(2) The structural similarities between the system of polynomials and the system of integers are developed. Students draw on 
analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the 
distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division  
of polynomials with long division of integers. Students identify zeros of polynomials and make connections between zeros  
of polynomials and solutions of polynomial equations. Rational numbers extend the arithmetic of integers by allowing  
division by all numbers except zero. Similarly, rational expressions extend the arithmetic of polynomials by allowing division 
by all polynomials except the zero polynomial. A central theme of the Mathematics III course is that the arithmetic of  
rational expressions is governed by the same rules as the arithmetic of rational numbers. This critical area also includes 
exploration of the Fundamental Theorem of Algebra.

(3) Students derive the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles. 
They are able to distinguish whether three given measures (angles or sides) define 0, 1, 2, or infinitely many triangles. 
This discussion of general triangles opens up the idea of trigonometry applied beyond the right triangle, at least to obtuse 
angles. Students build on this idea to develop the notion of radian measure for angles and extend the domain of the  
trigonometric functions to all real numbers. They apply this knowledge to model simple periodic phenomena.

(4) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with 
exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations 
on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that 
transformations on a graph always have the same effect regardless of the type of the underlying function. They identify  
appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare 
models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The 
description of modeling as “the process of choosing and using mathematics and statistics to analyze empirical situations, 
to understand them better, and to make decisions” is at the heart of this Mathematics III course. The narrative discussion 
and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied 
in a modeling context.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the  
subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years. 1 

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary 
and Secondary Education, 2011), 147–8.
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 Mathematics III Overview

Number and Quantity
The Complex Number System

 Use complex numbers in polynomial identities and equations.

Algebra
Seeing Structure in Expressions

 Interpret the structure of expressions.

 Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

 Perform arithmetic operations on polynomials.

 Understand the relationship between zeros and factors of  
polynomials.

 Use polynomial identities to solve problems.

 Rewrite rational expressions.

Creating Equations

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

 Understand solving equations as a process of reasoning and explain the reasoning.

 Represent and solve equations and inequalities graphically.

Functions
Interpreting Functions

 Interpret functions that arise in applications in terms of the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two quantities.

 Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

 Construct and compare linear, quadratic, and exponential models and solve problems.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Trigonometric Functions

 Extend the domain of trigonometric functions using the unit circle.

 Model periodic phenomena with trigonometric functions.

Geometry
Similarity, Right Triangles, and Trigonometry

 Apply trigonometry to general triangles.

Expressing Geometric Properties with Equations

 Translate between the geometric description and the equation for a conic section.

Geometric Measurement and Dimension

 Visualize relationships between two-dimensional and three-dimensional objects.

Modeling with Geometry

 Apply geometric concepts in modeling situations.

Statistics and Probability
Interpreting Categorical and Quantitative Data

 Summarize, represent, and interpret data on a single count or measurement variable.

Making Inferences and Justifying Conclusions

 Understand and evaluate random processes underlying statistical experiments.

 Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

Using Probability to Make Decisions 

 Use probability to evaluate outcomes of decisions.
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Number and Quantity

The Complex Number System N-CN

Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients; apply N.CN.9 to higher 
degree polynomials.]

8. (+) Extend polynomial identities to the complex numbers. 

9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Algebra

Seeing Structure in Expressions A-SSE

Interpret the structure of expressions. [Polynomial and rational]

1. Interpret expressions that represent a quantity in terms of its context.  

a. Interpret parts of an expression, such as terms, factors, and coefficients.  

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. 

2. Use the structure of an expression to identify ways to rewrite it. 

Write expressions in equivalent forms to solve problems.
4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve 

problems. For example, calculate mortgage payments.  

Arithmetic with Polynomials and Rational Expressions A-APR

Perform arithmetic operations on polynomials. [Beyond quadratic]

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of  
addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 

Understand the relationship between zeros and factors of polynomials.
2. Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), 

so p(a) = 0 if and only if (x – a) is a factor of p(x).

3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the 
function defined by the polynomial.

Use polynomial identities to solve problems.
4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity  

(x2 + y2)2 = (x2 –  y2)2 + (2xy)2 can be used to generate Pythagorean triples. 1 

5. (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n,  
where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.12

Note:  Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.(+) Indicates additional mathematics to prepare 
students for advanced courses.
1. The Binomial Theorem may be proven by mathematical induction or by a combinatorial argument.
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Rewrite rational expressions. [Linear and quadratic denominators]

6. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), 
and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the  
more complicated examples, a computer algebra system. 

7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtrac-
tion, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. 

Creating Equations A-CED

Create equations that describe numbers or relationships. [Equations using all available types of expressions, including simple 
root functions]

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA 

2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales.  

3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions 
as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost 
constraints on combinations of different foods. 

4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.  

Reasoning with Equations and Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]

2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and 
exponential functions.]

11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions  
of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of 
values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute 
value, exponential, and logarithmic functions.  

Functions

Interpreting Functions F-IF

Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root;  
emphasize selection of appropriate models.]

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity. 
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5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.  

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph. 

Analyze functions using different representations. [Include rational and radical; focus on using key features to guide selection 
of appropriate type of model function.]

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases. 

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions,  
showing period, midline, and amplitude. 

8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the 
function.

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables,  
or by verbal descriptions).

Building Functions F-BF

Build a function that models a relationship between two quantities. [Include all types of functions studied.]

1. Write a function that describes a relationship between two quantities. 

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature  
of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 

Build new functions from existing functions. [Include simple, radical, rational, and exponential functions; emphasize common 
effect of each transformation across function types.]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. 

4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. 
For example, f(x) = (x + 1)/(x − 1) for x ≠ 1. 

Linear, Quadratic, and Exponential Models F-LE

Construct and compare linear, quadratic, and exponential models and solve problems.

4. For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 
10, or e; evaluate the logarithm using technology.  [Logarithms as solutions for exponentials]

4.1. Prove simple laws of logarithms. CA 

4.2 Use the definition of logarithms to translate between logarithms in any base. CA 
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4.3 Understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their  
approximate values. CA 

Trigonometric Functions F-TF

Extend the domain of trigonometric functions using the unit circle.

1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, 
interpreted as radian measures of angles traversed counterclockwise around the unit circle.

2.1 Graph all 6 basic trigonometric functions. CA

Model periodic phenomena with trigonometric functions.

5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. 

Geometry

Similarity, Right Triangles, and Trigonometry G-SRT

Apply trigonometry to general triangles.

9.  (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to 
the opposite side.

10.  (+) Prove the Laws of Sines and Cosines and use them to solve problems.

11.  (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right 
triangles (e.g., surveying problems, resultant forces).

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section.

3.1 Given a quadratic equation of the form ax2 + by2 + cx + dy + e = 0, use the method for completing the square to put the 
equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and 
graph the equation. [In Mathematics III, this standard addresses only circles and parabolas.] CA

Geometric Measurement and Dimension G-GMD

Visualize relationships between two-dimensional and three-dimensional objects.

4. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects 
generated by rotations of two-dimensional objects.

Modeling with Geometry G-MG

Apply geometric concepts in modeling situations.

1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human 
torso as a cylinder). 
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2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic 
foot). 

3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or 
minimize cost; working with typographic grid systems based on ratios). 

Statistics and Probability

Interpreting Categorical and Quantitative Data S-ID

Summarize, represent, and interpret data on a single count or measurement variable.

4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. 
Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables 
to estimate areas under the normal curve.  		

Making Inferences and Justifying Conclusions S-IC

Understand and evaluate random processes underlying statistical experiments. 

1. Understand statistics as a process for making inferences about population parameters based on a random sample from 
that population. 

2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For 
example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to 
question the model? 

Make inferences and justify conclusions from sample surveys, experiments, and observational studies. 

3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how 
randomization relates to each. 

4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of 
simulation models for random sampling. 

5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between 
parameters are significant. 

6. Evaluate reports based on data. 

Using Probability to Make Decisions S-MD

Use probability to evaluate outcomes of decisions. [Include more complex situations.]

6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). 

7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey 
goalie at the end of a game). 
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Advanced Placement Probability 
and Statistics Standards

These standards are technical and in-depth extensions of probability and statistics. In particular, mastery of academic content 
for advanced placement gives students the background to succeed in the Advanced Placement examination in the subject. 

1.0  Students solve probability problems with finite sample spaces by using the rules for addition, multiplication, and  
complementation for probability distributions and understand the simplifications that arise with independent events. 

2.0  Students know the definition of conditional probability and use it to solve for probabilities in finite sample spaces. 

3.0  Students demonstrate an understanding of the notion of discrete random variables by using this concept to solve for the 
probabilities of outcomes, such as the probability of the occurrence of five or fewer heads in 14 coin tosses. 

4.0  Students understand the notion of a continuous random variable and can interpret the probability of an outcome as the 
area of a region under the graph of the probability density function associated with the random variable. 

5.0  Students know the definition of the mean of a discrete random variable and can determine the mean for a particular 
discrete random variable. 

6.0  Students know the definition of the variance of a discrete random variable and can determine the variance for a particular 
discrete random variable. 

7.0  Students demonstrate an understanding of the standard distributions (normal, binomial, and exponential) and can use 
the distributions to solve for events in problems in which the distribution belongs to those families. 

8.0  Students determine the mean and the standard deviation of a normally distributed random variable. 

9.0  Students know the central limit theorem and can use it to obtain approximations for probabilities in problems of finite 
sample spaces in which the probabilities are distributed binomially. 

10.0  Students know the definitions of the mean, median, and mode of distribution of data and can compute each of them in 
particular situations. 

11.0  Students compute the variance and the standard deviation of a distribution of data. 

12.0  Students find the line of best fit to a given distribution of data by using least squares regression. 

13.0  Students know what the correlation coefficient of two variables means and are familiar with the coefficient’s properties. 

14.0  Students organize and describe distributions of data by using a number of different methods, including frequency tables, 
histograms, standard line graphs and bar graphs, stem-and-leaf displays, scatterplots, and box-and-whisker plots. 

15.0  Students are familiar with the notions of a statistic of a distribution of values, of the sampling distribution of a statistic, 
and of the variability of a statistic. 

16.0  Students know basic facts concerning the relation between the mean and the standard deviation of a sampling  
distribution and the mean and the standard deviation of the population distribution. 
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17.0  Students determine confidence intervals for a simple random sample from a normal distribution of data and determine 
the sample size required for a desired margin of error. 

18.0  Students determine the P-value for a statistic for a simple random sample from a normal distribution. 

19.0  Students are familiar with the chi-square distribution and chi-square test and understand their uses. 
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Calculus Standards

When taught in high school, calculus should be presented with the same level of depth and rigor as are entry-level college and 
university calculus courses. These standards outline a complete college curriculum in one-variable calculus. Many high school 
programs may have insufficient time to cover all of the following content in a typical academic year. For example, some districts  
may treat differential equations lightly and spend substantial time on infinite sequences and series. Others may do the  
opposite. Consideration of the College Board syllabi for the Calculus AB and Calculus BC sections of the Advanced Placement 
Examination in Mathematics may be helpful in making curricular decisions. Calculus is a widely applied area of mathematics 
and involves a beautiful intrinsic theory. Students mastering this content will be exposed to both aspects of the subject. 

1.0  Students demonstrate knowledge of both the formal definition and the graphical interpretation of limit of values of 
functions. This knowledge includes one-sided limits, infinite limits, and limits at infinity. Students know the definition of 
convergence and divergence of a function as the domain variable approaches either a number or infinity: 

1.1  Students prove and use theorems evaluating the limits of sums, products, quotients, and composition of functions. 

1.2  Students use graphical calculators to verify and estimate limits. 

1.3  Students prove and use special limits, such as the limits of (sin(x))/x and (1−cos(x))/x as x tends to 0. 

2.0  Students demonstrate knowledge of both the formal definition and the graphical interpretation of continuity of a function. 

3.0  Students demonstrate an understanding and the application of the intermediate value theorem and the extreme value 
theorem. 

4.0  Students demonstrate an understanding of the formal definition of the derivative of a function at a point and the notion 
of differentiability: 

4.1  Students demonstrate an understanding of the derivative of a function as the slope of the tangent line to the graph 
of the function. 

4.2  Students demonstrate an understanding of the interpretation of the derivative as an instantaneous rate of change. 
Students can use derivatives to solve a variety of problems from physics, chemistry, economics, and so forth that 
involve the rate of change of a function. 

4.3  Students understand the relation between differentiability and continuity. 

4.4  Students derive derivative formulas and use them to find the derivatives of algebraic, trigonometric, inverse  
trigonometric, exponential, and logarithmic functions. 

5.0  Students know the chain rule and its proof and applications to the calculation of the derivative of a variety of composite 
functions. 

6.0  Students find the derivatives of parametrically defined functions and use implicit differentiation in a wide variety of  
problems in physics, chemistry, economics, and so forth. 

7.0  Students compute derivatives of higher orders. 

8.0  Students know and can apply Rolle’s Theorem, the mean value theorem, and L’Hôpital’s rule. 

9.0  Students use differentiation to sketch, by hand, graphs of functions. They can identify maxima, minima, inflection points, 
and intervals in which the function is increasing and decreasing. 
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10.0  Students know Newton’s method for approximating the zeros of a function. 

11.0  Students use differentiation to solve optimization (maximum-minimum problems) in a variety of pure and applied contexts. 

12.0  Students use differentiation to solve related rate problems in a variety of pure and applied contexts. 

13.0  Students know the definition of the definite integral by using Riemann sums. They use this definition to approximate  
integrals. 

14.0  Students apply the definition of the integral to model problems in physics, economics, and so forth, obtaining results in 
terms of integrals. 

15.0  Students demonstrate knowledge and proof of the fundamental theorem of calculus and use it to interpret integrals as 
antiderivatives. 

16.0  Students use definite integrals in problems involving area, velocity, acceleration, volume of a solid, area of a surface of 
revolution, length of a curve, and work. 

17.0  Students compute, by hand, the integrals of a wide variety of functions by using techniques of integration, such as substi-
tution, integration by parts, and trigonometric substitution. They can also combine these techniques when appropriate. 

18.0  Students know the definitions and properties of inverse trigonometric functions and the expression of these functions as 
indefinite integrals. 

19.0  Students compute, by hand, the integrals of rational functions by combining the techniques in standard 17.0 with the 
algebraic techniques of partial fractions and completing the square. 

20.0  Students compute the integrals of trigonometric functions by using the techniques noted above. 

21.0  Students understand the algorithms involved in Simpson’s rule and Newton’s method. They use calculators or computers 
or both to approximate integrals numerically. 

22.0  Students understand improper integrals as limits of definite integrals. 

23.0  Students demonstrate an understanding of the definitions of convergence and divergence of sequences and series of  
real numbers. By using such tests as the comparison test, ratio test, and alternate series test, they can determine 
whether a series converges. 

24.0  Students understand and can compute the radius (interval) of the convergence of power series. 

25.0  Students differentiate and integrate the terms of a power series in order to form new series from known ones. 

26.0  Students calculate Taylor polynomials and Taylor series of basic functions, including the remainder term. 

27.0  Students know the techniques of solution of selected elementary differential equations and their applications to a wide 
variety of situations, including growth-and-decay problems.
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Higher Mathematics  
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Number and Quantity

Overview

The Real Number System

 Extend the properties of exponents to rational exponents.

 Use properties of rational and irrational numbers.

Quantities

 Reason quantitatively and use units to solve problems.

The Complex Number System

 Perform arithmetic operations with complex numbers.

 Represent complex numbers and their operations on the  
complex plane.

 Use complex numbers in polynomial identities and equations.

Vector and Matrix Quantities

 Represent and model with vector quantities.

 Perform operations on vectors.

 Perform operations on matrices and use matrices in  
applications.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Number and Quantity N

The Real Number System N-RN

Extend the properties of exponents to rational exponents.

1.  Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents 
to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the 
cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.

2.  Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers.

3.  Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational  
number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Quantities N-Q

Reason quantitatively and use units to solve problems.

1.  Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units 
consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. 

2.  Define appropriate quantities for the purpose of descriptive modeling. 

3.  Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. 

The Complex Number System N-CN

Perform arithmetic operations with complex numbers.

1.  Know there is a complex number i such that i2 = –1, and every complex number has the form a + bi with a and b real.

2.  Use the relation i2 = –1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex 
numbers.

3.  (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Represent complex numbers and their operations on the complex plane.

4.  (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers),  
and explain why the rectangular and polar forms of a given complex number represent the same number.

5.  (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex 
plane; use properties of this representation for computation. For example, (–1 + √3 i)3 = 8 because (–1 + √3 i) has modulus 
2 and argument 120°.

6.  (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a 
segment as the average of the numbers at its endpoints.

Use complex numbers in polynomial identities and equations.

7.  Solve quadratic equations with real coefficients that have complex solutions.

8.  (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x + 2i)(x – 2i).

9.  (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
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N Number and Quantity 

Vector and Matrix Quantities N-VM

Represent and model with vector quantities.

1.  (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line  
segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).

2.  (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

3.  (+) Solve problems involving velocity and other quantities that can be represented by vectors.

Perform operations on vectors.

4.  (+) Add and subtract vectors.

a.  Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of 
two vectors is typically not the sum of the magnitudes.

b.  Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

c.  Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with the same magnitude as  
w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the  
appropriate order, and perform vector subtraction component-wise.

5.  (+) Multiply a vector by a scalar.

a.  Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar 
multiplication component-wise, e.g., as c(vx

, v
y
) = (cv

x
, cv

y
).

b.  Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v. Compute the direction of cv knowing that when 
|c|v ≠ 0, the direction of cv is either along v (for c > 0) or against v (for c < 0).

Perform operations on matrices and use matrices in applications.

6.  (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.

7.  (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.

8.  (+) Add, subtract, and multiply matrices of appropriate dimensions.

9.  (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative  
operation, but still satisfies the associative and distributive properties.

10.  (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 
0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative 
inverse.

11.  (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. 
Work with matrices as transformations of vectors.

12.  (+) Work with 2 × 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms 
of area.
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Algebra

Overview

Seeing Structure in Expressions

 Interpret the structure of expressions.

 Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

 Perform arithmetic operations on polynomials.

 Understand the relationship between zeros and factors of  
polynomials.

 Use polynomial identities to solve problems.

 Rewrite rational expressions.

Creating Equations

 Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

 Understand solving equations as a process of reasoning  
and explain the reasoning.

 Solve equations and inequalities in one variable.

 Solve systems of equations.

 Represent and solve equations and inequalities graphically.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Seeing Structure in Expressions A-SSE

Interpret the structure of expressions.

1.  Interpret expressions that represent a quantity in terms of its context. 

a.  Interpret parts of an expression, such as terms, factors, and coefficients. 

b.  Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret  
P(1+r)n as the product of P and a factor not depending on P. 

2.  Use the structure of an expression to identify ways to rewrite it. For example, see x4 – y4 as (x2)2 – (y2)2, thus recognizing it 
as a difference of squares that can be factored as (x2 – y2)(x2 + y2).

Write expressions in equivalent forms to solve problems.

3.  Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by  
the expression. 

a.  Factor a quadratic expression to reveal the zeros of the function it defines. 

b.  Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. 

c.  Use the properties of exponents to transform expressions for exponential functions. For example, the expression  
1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the  
annual rate is 15%. 

4.  Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve 
problems. For example, calculate mortgage payments. 

Arithmetic with Polynomials and Rational Expressions A-APR

Perform arithmetic operations on polynomials.

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of  
addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 

Understand the relationship between zeros and factors of polynomials.

2.  Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), 
so p(a) = 0 if and only if (x – a) is a factor of p(x).

3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of  
the function defined by the polynomial.

Use polynomial identities to solve problems.

4.  Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity  
(x2 + y2)2 = (x2 – y2)2 + (2xy)2 can be used to generate Pythagorean triples.

5.  (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n,  
where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.1

1. The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument. 
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Algebra A

Rewrite rational expressions.

6.  Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), 
and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more 
complicated examples, a computer algebra system.

7.  (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtrac-
tion, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Creating Equations A-CED

Create equations that describe numbers or relationships.

1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. 
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA 

2.  Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate 
axes with labels and scales. 

3.  Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions 
as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost 
constraints on combinations of different foods. 

4.  Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example,  
rearrange Ohm’s law V = IR to highlight resistance R. 

Reasoning with Equations and Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning.

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, 
starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution 
method.

2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable.

3.  Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

3.1 Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in 
context. CA

4.  Solve quadratic equations in one variable.

a.  Use the method of completing the square to transform any quadratic equation in x into an equation of the form  
(x – p)2 = q that has the same solutions. Derive the quadratic formula from this form.

b.  Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic 
formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives 
complex solutions and write them as a ± bi for real numbers a and b.
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Solve systems of equations.

5.  Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and  
a multiple of the other produces a system with the same solutions.

6.  Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in  
two variables.

7.  Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.  
For example, find the points of intersection between the line y = –3x and the circle x2 + y2 = 3.

8.  (+) Represent a system of linear equations as a single matrix equation in a vector variable.

9.  (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of 
dimension 3 × 3 or greater).

Represent and solve equations and inequalities graphically.

10.  Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often 
forming a curve (which could be a line).

11.  Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions  
of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of 
values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute 
value, exponential, and logarithmic functions. 

12.  Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict 
inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the  
corresponding half-planes. 
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Functions

Overview

Interpreting Functions

 Understand the concept of a function and use function  
notation.

 Interpret functions that arise in applications in terms of  
the context.

 Analyze functions using different representations.

Building Functions

 Build a function that models a relationship between two  
quantities.

 Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

 Construct and compare linear, quadratic, and exponential  
models and solve problems.

 Interpret expressions for functions in terms of the situation  
they model.

Trigonometric Functions

 Extend the domain of trigonometric functions using the unit circle.

 Model periodic phenomena with trigonometric functions.

 Prove and apply trigonometric identities.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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F Functions 

Interpreting Functions F-IF

Understand the concept of a function and use function notation.

1.  Understand that a function from one set (called the domain) to another set (called the range) assigns to each element 
of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the 
output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

2.  Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in 
terms of a context.

3.  Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.  
For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n−1) for n ≥ 1.

Interpret functions that arise in applications in terms of the context.

4.  For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of 
the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: 
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; 
symmetries; end behavior; and periodicity. 

5.  Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example,  
if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers 
would be an appropriate domain for the function. 

6.  Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified 
interval. Estimate the rate of change from a graph. 

Analyze functions using different representations.

7.  Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology 
for more complicated cases. 

a.  Graph linear and quadratic functions and show intercepts, maxima, and minima. 

b.  Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 

c.  Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 

d.  (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing 
end behavior. 

e.  Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions,  
showing period, midline, and amplitude. 

8.  Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the 
function.

a.  Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and  
symmetry of the graph, and interpret these in terms of a context.

b.  Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate 
of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing 
exponential growth or decay.

9.  Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or 
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FFunctions 

by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say 
which has the larger maximum.

0. (+) Demonstrate an understanding of functions and equations defined parametrically and graph them. CA 

1. (+) Graph polar coordinates and curves. Convert between polar and rectangular coordinate systems. CA

Building Functions F-BF

uild a function that models a relationship between two quantities.

.  Write a function that describes a relationship between two quantities. 

a.  Determine an explicit expression, a recursive process, or steps for calculation from a context. 

b.  Combine standard function types using arithmetic operations. For example, build a function that models the temperature  
of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 

c.  (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the 
height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon 
as a function of time. 

.  Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and 
translate between the two forms. 

uild new functions from existing functions.

.  Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive 
and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the 
graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

.  Find inverse functions.

a.  Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. 
For example, f(x) =2 x3 or f(x) = (x+1)/(x–1) for x ≠ 1.

b.  (+) Verify by composition that one function is the inverse of another.

c.  (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.

d.  (+) Produce an invertible function from a non-invertible function by restricting the domain.

.  (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems 
involving logarithms and exponents.

Linear, Quadratic, and Exponential Models F-LE

onstruct and compare linear, quadratic, and exponential models and solve problems.

.  Distinguish between situations that can be modeled with linear functions and with exponential functions. 

a.  Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal 
factors over equal intervals. 

b.  Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 

c.  Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. 
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F Functions 

2.  Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a 
relationship, or two input-output pairs (include reading these from a table). 

3.  Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, 
quadratically, or (more generally) as a polynomial function. 

4.  For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 
10, or e; evaluate the logarithm using technology. 

4.1  Prove simple laws of logarithms. CA 

4.2 Use the definition of logarithms to translate between logarithms in any base. CA  

4.3 Understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their  
approximate values. CA  

Interpret expressions for functions in terms of the situation they model.

5.  Interpret the parameters in a linear or exponential function in terms of a context. 

6. Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA 

Trigonometric Functions F-TF

Extend the domain of trigonometric functions using the unit circle.

1.  Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

2.  Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, 
interpreted as radian measures of angles traversed counterclockwise around the unit circle.

2.1 Graph all 6 basic trigonometric functions. CA

3.  (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for π /3, π /4 and π /6, and use 
the unit circle to express the values of sine, cosine, and tangent for π –x, π +x, and 2π –x in terms of their values for x, 
where x is any real number.

4.  (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Model periodic phenomena with trigonometric functions.

5.  Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. 

6.  (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing 
allows its inverse to be constructed.

7.  (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using 
technology, and interpret them in terms of the context. 

Prove and apply trigonometric identities.

8.  Prove the Pythagorean identity sin2(θ ) + cos2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), 
or tan(θ ) and the quadrant of the angle.

9.  (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

10. (+) Prove the half angle and double angle identities for sine and cosine and use them to solve problems. CA
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 Modeling

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of 
choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to 
improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be 
modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying 
assumptions, exploring consequences, and comparing predictions with data. 

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape 
to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a 
coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—
modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that 
use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating 
tractable models, representing such models, and analyzing them is appropriately a creative process. Like every such process, 
this depends on acquired expertise as well as creativity.

Some examples of such situations might include:

 Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it 
might be distributed.

 Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other 
player.

 Designing the layout of the stalls in a school fair so as to raise as much money as possible.

 Analyzing stopping distance for a car.

 Modeling savings account balance, bacterial colony growth, or investment growth.

 Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport.

 Analyzing risk in situations such as extreme sports, pandemics, and terrorism.

 Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What 
aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? 
The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and 
technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, 
spreadsheets and other technology, and algebra are powerful tools for understanding and solving problems drawn from different 
types of real-world situations.

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can 
sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves, for 
example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.
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The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those 
that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or 
statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these 
relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating 
the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting  
on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observa-
tions are a familiar descriptive model— for example, graphs of global temperature and atmospheric CO2 over time.

Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically 
based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) 
follows from a constant reproduction rate. Functions are an important tool for analyzing such problems.

Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be 
used to model purely mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena.

Modeling Standards Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. 
Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the 
high school standards indicated by a star symbol ().



Geometry

Overview

Congruence

 Experiment with transformations in the plane.

 Understand congruence in terms of rigid motions.

 Prove geometric theorems.

 Make geometric constructions.

Similarity, Right Triangles, and Trigonometry

 Understand similarity in terms of similarity transformations.

 Prove theorems involving similarity.

 Define trigonometric ratios and solve problems involving  
right triangles.

 Apply trigonometry to general triangles.

Circles

 Understand and apply theorems about circles.

 Find arc lengths and areas of sectors of circles.

Expressing Geometric Properties with Equations

 Translate between the geometric description and the equation for a conic section.

 Use coordinates to prove simple geometric theorems algebraically.

Geometric Measurement and Dimension

 Explain volume formulas and use them to solve problems.

 Visualize relationships between two-dimensional and three-dimensional objects.

Modeling with Geometry

 Apply geometric concepts in modeling situations.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique  
the reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Congruence G-CO

Experiment with transformations in the plane.

1.  Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions 
of point, line, distance along a line, and distance around a circular arc.

2.  Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as 
functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve 
distance and angle to those that do not (e.g., translation versus horizontal stretch).

3.  Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

4.  Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, 
and line segments.

5.  Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper,  
tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions.

6.  Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given 
figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

7.  Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if correspond-
ing pairs of sides and corresponding pairs of angles are congruent.

8.  Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of 
rigid motions.

Prove geometric theorems.

9.  Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses  
parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular 
bisector of a line segment are exactly those equidistant from the segment’s endpoints.

10.  Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of 
isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and 
half the length; the medians of a triangle meet at a point.

11.  Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the 
diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions.

12.  Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective 
devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment;  
bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and  
constructing a line parallel to a given line through a point not on the line.

13.  Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
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Similarity, Right Triangles, and Trigonometry G-SRT

Understand similarity in terms of similarity transformations.

1.  Verify experimentally the properties of dilations given by a center and a scale factor:

a.  A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through 
the center unchanged.

b.  The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

2.  Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain 
using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles 
and the proportionality of all corresponding pairs of sides.

3.  Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove theorems involving similarity.

4.  Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportion-
ally, and conversely; the Pythagorean Theorem proved using triangle similarity.

5.  Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles.

6.  Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions 
of trigonometric ratios for acute angles.

7.  Explain and use the relationship between the sine and cosine of complementary angles.

8.  Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. 

8.1 Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°) CA

Apply trigonometry to general triangles.

9.  (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to 
the opposite side.

10.  (+) Prove the Laws of Sines and Cosines and use them to solve problems.

11.  (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right 
triangles (e.g., surveying problems, resultant forces).

Circles G-C

Understand and apply theorems about circles.

1.  Prove that all circles are similar.

2.  Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, 
inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular 
to the tangent where the radius intersects the circle.
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3.  Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed 
in a circle.

4.  (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles.

5.  Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the 
radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between 
degrees and radians. CA

Expressing Geometric Properties with Equations G-GPE

Translate between the geometric description and the equation for a conic section.

1.  Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the 
center and radius of a circle given by an equation.

2.  Derive the equation of a parabola given a focus and directrix.

3.  (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances 
from the foci is constant.

3.1 Given a quadratic equation of the form ax2 + by2 + cx + dy + e = 0, use the method for completing the square to put the 
equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and 
graph the equation. CA

Use coordinates to prove simple geometric theorems algebraically.

4.  Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by 
four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at 
the origin and containing the point (0, 2).

5.  Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the  
equation of a line parallel or perpendicular to a given line that passes through a given point).

6.  Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

7.  Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. 

Geometric Measurement and Dimension G-GMD

Explain volume formulas and use them to solve problems.

1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, 
and cone. Use dissection arguments, Cavalieri’s principle, and information limit arguments.

2.  (+) Give an informal argument using Cavalieri’s principle for the formulas for the volume of a sphere and other solid figures.

3.  Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. 
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Visualize relationships between two-dimensional and three-dimensional objects.

4.  Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects 
generated by rotations of two-dimensional objects.

5. Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k2, and k3, 
respectively; determine length, area and volume measures using scale factors. CA 

6. Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, 
and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-
world and mathematical problems. CA

Modeling with Geometry G-MG

Apply geometric concepts in modeling situations.

1.  Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human 
torso as a cylinder). 

2.  Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per  
cubic foot). 

3.  Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or 
minimize cost; working with typographic grid systems based on ratios). 
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Overview

Interpreting Categorical and Quantitative Data

 Summarize, represent, and interpret data on a single count or  
measurement variable.

 Summarize, represent, and interpret data on two categorical  
and quantitative variables.

 Interpret linear models.

Making Inferences and Justifying Conclusions

 Understand and evaluate random processes underlying  
statistical experiments.

 Make inferences and justify conclusions from sample surveys,  
experiments, and observational studies.

Conditional Probability and the Rules of Probability

 Understand independence and conditional probability and  
use them to interpret data.

 Use the rules of probability to compute probabilities of  
compound events in a uniform probability model.

Using Probability to Make Decisions

 Calculate expected values and use them to solve problems.

 Use probability to evaluate outcomes of decisions.

Mathematical Practices

1.  Make sense of problems and persevere in 
solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the 
reasoning of others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated 
reasoning.
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Interpreting Categorical and Quantitative Data S-ID

Summarize, represent, and interpret data on a single count or measurement variable.

1.  Represent data with plots on the real number line (dot plots, histograms, and box plots). 

2.  Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile 
range, standard deviation) of two or more different data sets. 

3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme 
data points (outliers). 

4.  Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. 
Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables 
to estimate areas under the normal curve. 

Summarize, represent, and interpret data on two categorical and quantitative variables.

5.  Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context  
of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends  
in the data. 

6.  Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. 

a.  Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions 
or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. 

b.  Informally assess the fit of a function by plotting and analyzing residuals. 

c.  Fit a linear function for a scatter plot that suggests a linear association. 

Interpret linear models.

7.  Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 

8.  Compute (using technology) and interpret the correlation coefficient of a linear fit. 

9.  Distinguish between correlation and causation. 

Making Inferences and Justifying Conclusions S-IC

Understand and evaluate random processes underlying statistical experiments.

1.  Understand statistics as a process for making inferences about population parameters based on a random sample from 
that population. 

2.  Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.  
For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you  
to question the model? 

Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

3.  Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how 
randomization relates to each. 

4.  Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of 
simulation models for random sampling. 
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5.  Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between 
parameters are significant. 

6.  Evaluate reports based on data. 

Conditional Probability and the Rules of Probability S-CP

Understand independence and conditional probability and use them to interpret data.

1.  Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, 
or as unions, intersections, or complements of other events (“or,” “and,” “not”). 

2.  Understand that two events A and B are independent if the probability of A and B occurring together is the product of their 
probabilities, and use this characterization to determine if they are independent. 

3.  Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying 
that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A 
is the same as the probability of B. 

4.  Construct and interpret two-way frequency tables of data when two categories are associated with each object being  
classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional 
probabilities. For example, collect data from a random sample of students in your school on their favorite subject among 
math, science, and English. Estimate the probability that a randomly selected student from your school will favor science 
given that the student is in tenth grade. Do the same for other subjects and compare the results. 

5.  Recognize and explain the concepts of conditional probability and independence in everyday language and everyday  
situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker  
if you have lung cancer. 

Use the rules of probability to compute probabilities of compound events in a uniform probability model.

6.  Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer 
in terms of the model. 

7.  Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. 

8.  (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and  
interpret the answer in terms of the model. 

9.  (+) Use permutations and combinations to compute probabilities of compound events and solve problems. 

Using Probability to Make Decisions S-MD

Calculate expected values and use them to solve problems.

1.  (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; 
graph the corresponding probability distribution using the same graphical displays as for data distributions. 

2.  (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. 
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3.  (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can 
be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct 
answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find 
the expected grade under various grading schemes. 

4.  (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned 
empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in 
the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 
100 randomly selected households? 

Use probability to evaluate outcomes of decisions.

5.  (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. 

a.  Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or  
a game at a fast-food restaurant. 

b.  Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus  
a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major  
accident. 

6.  (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). 

7.  (+) Analyze decisions and strategies using probability concepts (e.g. product testing, medical testing, pulling a hockey 
goalie at the end of a game). 
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Glossary

Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number  
answers, and with sum or minuend in the range 0-5, 0-10, 0-20, or 0-100, respectively. Example: 8 + 2 = 10 is an addition 
within 10, 14 – 5 = 9 is a subtraction within 20, and 55 – 18 = 37 is a subtraction within 100.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: 3/4 and – 3/4 are additive 
inverses of one another because 3/4 + (– 3/4) = (– 3/4) + 3/4 = 0.

Associative property of addition. See Table 3 in this Glossary.

Associative property of multiplication. See Table 3 in this Glossary.

Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.

Box plot. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data 
set. A box shows the middle 50% of the data.

Commutative property. See Table 3 in this Glossary.

Complex fraction. A fraction A/B where A and/or B are fractions (B nonzero).

Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case 
when the steps are carried out correctly. See also: computation strategy.

Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may 
be aimed at converting one problem into another. See also: computation algorithm.

Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of  
rotations, reflections, and translations).

Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For 
example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the 
stack all over again. One can find the total by counting on—pointing to the top book and saying “eight,” following this with “nine, 
ten, eleven. There are eleven books now.”

Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies 
distances from the center by a common scale factor.

Dot plot. See: line plot.

Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of  
powers of ten. For example, 643 = 600 + 40 + 3.

Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective  
probabilities.
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First quartile. For a data set with median M, the first quartile is the median of the data values less than M. Example: For the 
data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the first quartile is 6.1 See also: median, third quartile, interquartile range.

Fraction. A number expressible in the form a/b where a is a whole number and b is a positive whole number. (The word fraction 
in these standards always refers to a non-negative number.) See also: rational number.

Identity property of 0. See Table 3 in this Glossary.

Independently combined probability models. Two probability models are said to be combined independently if the probability  
of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in  
the ordered pair.1

Integer. A number expressible in the form a or –a for some whole number a.

Interquartile range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first 
and third quartiles of the data set. Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the interquartile range is  
15 – 6 = 9. See also: first quartile, third quartile.

Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a 
number line. Also known as a dot plot.2

Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number 
of values in the list.2 Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean is 21.

Mean absolute deviation. A measure of variation in a set of numerical data, computed by adding the distances between each 
data value and the mean, then dividing by the number of data values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 
120}, the mean absolute deviation is 20.

Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a 
sorted version of the list—or the mean of the two central values, if the list contains an even number of values. Example: For the 
data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 90}, the median is 11.

Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with 
product or dividend in the range 0-100. Example: 72 ÷ 8 = 9.

Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: 3/4 and 4/3 are 
multiplicative inverses of one another because 3/4 × 4/3 = 4/3 × 3/4 = 1.

Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number 
line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.

Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it 
grows by 5/50 = 10% per year.

1. Many different methods for computing quartiles are in use. The method defined here is sometimes called the Moore and McCabe method.  
See E. Langford, “Quartiles in Elementary Statistics,” Journal of Statistics Education Volume 14, Number 3 (2006).

2. To be more precise, this defines the arithmetic mean.

Glossary  | 145



G Glossary

Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing 
a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).

Probability distribution. The set of possible values of a random variable with a probability assigned to each.

Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the  
nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1. See also: uniform 
probability model.

Properties of equality. See Table 4 in this Glossary.

Properties of inequality. See Table 5 in this Glossary.

Properties of operations. See Table 3 in this Glossary.

Random variable. An assignment of a numerical value to each outcome in a sample space.

Rational expression. A quotient of two polynomials with a non-zero denominator.

Rational number. A number expressible in the form a/b or – a/b for some fraction a/b. The rational numbers include the integers.

Rectilinear figure. A polygon all angles of which are right angles.

Repeating decimal. The decimal form of a rational number. See also: terminating decimal.

Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or  
rotations. Rigid motions are here assumed to preserve distances and angle measures.

Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.

Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a 
group of people could be displayed on a scatter plot.

Similarity transformation. A rigid motion followed by a dilation.

Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip  
diagram, bar model, fraction strip, or length model.

Terminating decimal. A decimal is called terminating if its repeating digit is 0.

Third quartile. For a data set with median M, the third quartile is the median of the data values greater than M. Example: For the 
data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the third quartile is 15. See also: median, first quartile, interquartile range.

Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of 
object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle 
applies to measurement of other quantities as well.

Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model.
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Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.

Visual fraction model. A tape diagram, number line diagram, or area model.

Whole numbers. The numbers 0, 1, 2, 3, . . . .
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Table 1. Common addition and subtraction situations.31

Result Unknown Change Unknown Start Unknown

Add to

Two bunnies sat on the grass. Three 
more bunnies hopped there. How 
many bunnies are on the grass 
now?

2 + 3 = ?

Two bunnies were sitting on 
the grass. Some more bunnies 
hopped there. Then there were 
five bunnies. How many bunnies 
hopped over to the first two?

2 + ? = 5

Some bunnies were sitting on 
the grass. Three more bunnies 
hopped there. Then there were 
five bunnies. How many bunnies 
were on the grass before?

? + 3 = 5

Take from

Five apples were on the table. I ate 
two apples. How many apples are 
on the table now?

5 – 2 = ?

Five apples were on the table. 
I ate some apples. Then there 
were three apples. How many 
apples did I eat?

5 – ? = 3

Some apples were on the table.  
I ate two apples. Then there were 
three apples. How many apples 
were on the table before?

? – 2 = 3

Total Unknown Addend Unknown Both Addends Unknown4

Put Together/ 
Take Apart5

Three red apples and two green 
apples are on the table. How many 
apples are on the table?

3 + 2 = ?

Five apples are on the table. 
Three are red and the rest are 
green. How many apples are 
green?

3 + ? = 5, 5 – 3 = ?

Grandma has five flowers. How 
many can she put in her red vase 
and how many in her blue vase?

5 = 0 + 5, 5 = 5 + 0
5 = 1 + 4, 5 = 4 + 1
5 = 2 + 3, 5 = 3 + 2

Difference Unknown Bigger Unknown Smaller Unknown

Compare6

(“How many more?” version): 
Lucy has two apples. Julie has five 
apples. How many more apples 
does Julie have than Lucy? 

(“How many fewer?” version): 
Lucy has two apples. Julie has five 
apples. How many fewer apples 
does Lucy have than Julie?

2 + ? = 5, 5 – 2 = ?

(Version with “more”): Julie has 
three more apples than Lucy. 
Lucy has two apples. How many 
apples does Julie have? 

(Version with “fewer”): Lucy 
has 3 fewer apples than Julie. 
Lucy has two apples. How many 
apples does Julie have?

2 + 3 = ?, 3 + 2 = ?

(Version with “more”): Julie has 
three more apples than Lucy. 
Julie has five apples. How many 
apples does Lucy have? 

(Version with “fewer”): Lucy 
has 3 fewer apples than Julie. 
Julie has five apples. How many 
apples does Lucy have?

5 – 3 = ?, ? + 3 = 5

3. Adapted from Boxes 2–4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp. 32–33).

4. These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left 
of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as.

5. Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic 
situation, especially for small numbers less than or equal to 10.

6. For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and 
using less for the smaller unknown). The other versions are more difficult.
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Table 2. Common multiplication and division situations.71

Unknown Product

3 × 6 = ?

Group Size Unknown  
(“How many in each 

group?” Division)

3 × ? = 18 and 18 ÷ 3 = ?

Number of Groups Unknown 
(“How many groups?”  

  Division)

? × 6 = 18 and 18 ÷ 6 = ?

Equal Groups

There are 3 bags with 6 plums in 
each bag. How many plums are 
there in all? 

Measurement example. You need 
3 lengths of string, each 6 inches 
long. How much string will you 
need altogether?

If 18 plums are shared equally 
into 3 bags, then how many 
plums will be in each bag?

Measurement example. You have 
18 inches of string, which you 
will cut into 3 equal pieces. How 
long will each piece of string be? 

If 18 plums are to be packed 6 to 
a bag, then how many bags are 
needed?

Measurement example. You have 18 
inches of string, which you will cut 
into pieces that are 6 inches long. 
How many pieces of string will you 
have?

Arrays,8 
Area9

There are 3 rows of apples with 
6 apples in each row. How many 
apples are there?

Area example. What is the area 
of a 3 cm by 6 cm rectangle?

If 18 apples are arranged into 3 
equal rows, how many apples will 
be in each row?

Area example. A rectangle has 
area 18 square centimeters. If 
one side is 3 cm long, how long 
is a side next to it?

If 18 apples are arranged into equal 
rows of 6 apples, how many rows 
will there be?

Area example. A rectangle has area 
18 square centimeters. If one side 
is 6 cm long, how long is a side next 
to it?

Compare

A blue hat costs $6. A red hat 
costs 3 times as much as the 
blue hat. How much does the red 
hat cost?

Measurement example. A rubber 
band is 6 cm long. How long will 
the rubber band be when it is 
stretched to be 3 times as long?

A red hat costs $18 and that is 
3 times as much as a blue hat 
costs. How much does a blue hat 
cost?

Measurement example. A rubber 
band is stretched to be 18 cm 
long and that is 3 times as long 
as it was at first. How long was 
the rubber band at first?

A red hat costs $18 and a blue hat 
costs $6. How many times as much 
does the red hat cost as the blue 
hat?

Measurement example. A rubber 
band was 6 cm long at first. Now it 
is stretched to be 18 cm long. How 
many times as long is the rubber 
band now as it was at first?

General a × b = ? a × ? = p and p ÷ a = ? ? × b = p and p ÷ b = ?

7. The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

8. The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the 
grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

9. Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially  
important measurement situations.
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Table 3. The properties of operations. 
Here a, b, and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational num-
ber system, the real number system, and the complex number system.

Associative property of addition (a + b) + c = a + (b + c)

Commutative property of addition a + b = b + a

Additive identity property of 0 a + 0 = 0 + a = a

Existence of additive inverses For every a there exists –a so that a + (–a) = (–a) + a = 0.

Associative property of multiplication (a × b) × c = a × (b × c)

Commutative property of multiplication a × b = b × a

Multiplicative identity property of 1 a × 1 = 1 × a = a

Existence of multiplicative inverses For every a ≠ 0 there exists 1/a so that a × 1/a = 1/a × a = 1.

Distributive property of multiplication over addition a × (b + c) = a × b + a × c

Table 4. The properties of equality. 
Here a, b, and c stand for arbitrary numbers in the rational, real, or complex number systems.

Reflexive property of equality a = a

Symmetric property of equality If a = b, then b = a.

Transitive property of equality If a = b and b = c, then a = c.

Addition property of equality If a = b, then a + c = b + c.

Subtraction property of equality If a = b, then a – c = b – c.

Multiplication property of equality If a = b, then a × c = b × c.

Division property of equality If a = b and c ≠ 0, then a ÷ c = b ÷ c.

Substitution property of equality If a = b, then b may be substituted for a in any expression containing a.
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Table 5. The properties of inequality. 
Here a, b, and c stand for arbitrary numbers in the rational or real number systems.

Exactly one of the following is true: a < b, a = b, a > b.

If a > b and b > c then a > c.

If a > b, then b < a.

If a > b, then –a < –b.

If a > b, then a ± c > b ± c.

If a > b and c > 0, then a × c > b × c.

If a > b and c < 0, then a × c < b × c.

If a > b and c > 0, then a ÷ c > b ÷ c.

If a > b and c < 0, then a ÷ c < b ÷ c.
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